Chapter 2
Scattering of Electromagnetic Waves
from a Spherical Boundary Using a
Thin Phase Screen Model and
Scalar Diffraction Theory

2.1 Introduction

This monograph focuses principally on the calculation of the
electromagnetic field vector observed by a low Earth orbiting (LEO) spacecraft
during an occultation of a Global Positioning System (GPS) satellite that is
broadcasting a navigation signal. Of specific interest is the change in the
observed signal amplitude and phase of the electric field that results from a
sharp change across a spherical surface of a refraction-related property of the
atmosphere. This would include a discontinuity in the atmospheric refractivity
itself, or in some other quantity, such as the gradient of the refractivity caused,
for example, by a change in scale height or the lapse rate of the temperature
profile. Discontinuities such as these, and also milder dislocations, can result in
multiple rays arriving concurrently at the LEO or, conversely, in shadow zones
where no rays (according to geometric optics) arrive. Diffraction also is a by-
product of these types of refractivity changes, but the amplitudes and
frequencies of the diffraction fringes very much depend on the sharpness of the
change and its type. Also, sometimes, caustics are present for certain LEO
orbital positions.

The calculation of the observed electromagnetic field for these situations
can be very difficult. Even with certain geometric assumptions in place, such as
spherical symmetry, GPS/LEO orbital coplanarity, and a planar wave front for
the incident wave, the exact wave-theoretic solution to this problem based on
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Maxwell’s equations is not readily tractable. Mie scattering theory is an
example of a wave-theoretic approach to this spherical problem. Chapter 3 uses
Mie scattering theory to study scattering from a spherical surface in an
otherwise homogeneous medium. Chapter 5 uses a modified version of Mie
scattering to deal with a scattering surface that is embedded in a refracting
medium. Both of these chapters involve a full-wave theory approach, which
results in spectral series representations of the electromagnetic field that are
solutions to the Helmholtz equation.

Here in Chapter 2, however, we use a combination of geometric optics and
scalar diffraction theory applied to a thin phase screen model to develop the
phase and amplitude profile that would be observed by a LEO as a result of a
change in a refractivity-related quantity. The thin screen becomes a proxy for
the actual atmosphere. A vertical profile for the atmosphere-induced phase
delay is embedded in the thin-screen model in such a way that the phase and
amplitude profile observed by the LEO over time matches (according to
geometric optics) the actual profile. This model in a ray-theoretic framework
greatly simplifies the calculations. But, when diffraction effects are included,
one must also deal with a convolution integral over the vertical profile in the
thin phase screen. In wave theory, the spectral series representations of the
electromagnetic field are essentially integrals over spectral number space. In the
thin-screen approach, the integral representation of scalar diffraction effects is
effectively over impact parameter space.

In Fig. 2-1 we see a ray with its point of tangency below the surface 7, that
is, n <r,. This surface at r =r, marks a boundary separating the “+” and the
“~ regimes. Across this surface a single discontinuity is assumed to occur (in
an otherwise benign medium) in one of the parameters that define the
relationship between the refractivity and the radial distance . We will consider
the effects of small discontinuities at 7, in three parameters: N, the refractivity

at r,; H o> the pressure scale height; and y = T_ldT/ dr, the normalized lapse

rate of the temperature profile. The profile of the observed bending angle of the
signal from an occulted GPS satellite will change as a result of a discontinuity
at 7, in any one of these quantities.

Fig. 2-1. Ray path in a stratified medium with a
spherical boundary separating two regimes.
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211 Multipath Scenarios

Figure 2-2 shows different multipath scenarios. Figure 2-2(a) is a schematic
ray diagram for a collimated beam of plane waves encountering from the left a
sphere of lower refractivity than that in the surrounding medium, a so-called
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Fig. 2-2. Multipath scenarios caused by a refracting sphere according to geometric optics.
Rays arriving on the right at the same point have a common observation epoch denoted by
to.t1,,---: (@) N(r) or its gradient is less inside than outside, (b) N(r) is greater inside with
super-refractivity, and (c) the gradient of N(r) is greater inside without super-refractivity.
The altitude of the observer is denoted by h, g, and the altitude of the impact parameter of
the ray is denoted by h.
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sub-refraction scenario. For a setting occultation, the observer may be thought
of here as traveling vertically downward on the right-hand side of the panels
along the points labeled ¢,,t,1,,---, which denote the epochs at which one
observes the rays arriving at those corresponding points. The altitude of the
observation point is denoted in the figure (relative, say, to the bottom of the
frame) by the variable /. There is a one-to-one and almost linear relation

between these points in time and the values of 74, , fLLG = DQL =2-3 km/s,

where D is the LEO limb distance and 9L is its orbit angle rate relative to the
direction of the GPS satellite and projected into the plane of propagation. The
altitude of the corresponding observed ray before passing through the sphere
(shown on the left edge of the figure) is denoted by /%, which is closely related
to the impact parameter of the ray minus the reference. For observations taken
before #;, only a single ray is encountered, and the measured phase and
amplitude of the signal can unambiguously be assigned to this singlet. The
epoch #; marks the first contact by the observer with a triplet ray system, the
rays of which have been labeled in Fig. 2-2 as “m” for the main ray, “a” for the
anomalous ray, and “b” for the branching ray. Rays observed at the same epoch
arrive at the same time point on the right. At the position of the observer at #, in
Fig. 2-2(a), the newly created a and b rays are collinear, but thereafter the
points of tangency of the observed a and b rays, that is, their /4 or impact
parameter values, migrate in opposite directions: for the a ray upward and for
the b ray downward. Thus, at the epoch #,, the altitude /. of the observer is
stationary with respect to the altitude % of the a,b ray system. This corresponds
to dh, [ dh being zero at t; for either the a or the b ray, and having opposite
polarities on these two rays for later times as they drift apart. This results in a
separation in observed bending angles and/or excess Doppler, which are both
offset from the bending angle and excess Doppler associated with the main ray
m, the third ray. Between epochs #; and t;, the observer must deal with a triplet
ray system for this case. Worse scenarios with quintuplets and higher numbers
can readily be constructed. As time is shown progressing in Fig. 2-2(a), the
observer finally reaches the point, at epoch 73, where the m and a rays have
merged—their respective points of tangency, or & values, have met at the
boundary of the sphere; dh, / dh also is zero here. This marks the end of the
line for these two rays, and from this epoch onward (for example, at #,) one has
only the singlet b ray remaining; it now becomes m, the new main ray. We
show later that caustic rays occur where dh,, / dh =0, in this figure at #; and at
t;. The scalar diffraction version of this scenario in Fig. 2-2(a), which is
discussed later, is shown in Figs. 2-10(a) and 2-10(c) and in Figs. 2-11(c) and
2-11(d).

Figure 2-2(b) shows a schematic ray diagram for the converse scenario
where the refractivity is abruptly larger within the sphere than outside. This
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creates a super-refractivity zone. Here one observes a blackout (according to
geometric optics) for the time interval from 7, to t,; the observer moves into a
shadow zone at #; and exits it at ¢,. This is accompanied by a flaring at #,; at
this point dh,, / dh=0. Thereafter, the observer sees a doublet ray system.

This doublet is a result of the condition rn(r)—rn ()20, Vr>n being
violated for tangency points nearing the boundary, a hard discontinuity in
refractivity in this example, which causes the main ray to terminate abruptly at
the boundary and no rays to arrive in the shadow zone. The scalar diffraction
version of this scenario is discussed in Section 2.7 (see Figs. 2-11(a) and
2-11(b).

Figure 2-2(c) relaxes the discontinuity in refractivity shown in Fig. 2-2(b).
It imposes a continuous refraction profile, but it invokes a large but finite
gradient in refractivity between the boundary and a short distance below it.
Below this level, the gradient resumes its reference profile. However, the
magnitude of the gradient in the transition region is constrained to ensure that

the ray existence condition rn(r)—rnn (r:) =0, Vr=r holds for all values of
the tangency point 7 near the boundary, thereby ensuring that rays exist for all

values of the impact parameter. The radius of curvature of the rays here is
greater than the spherical radius. This scenario results in a triplet ray system
(for t, <t<t,), although in Fig. 2-2(c) the m ray becomes severely defocused
in this multipath region. Figures 2-10 (b) and 2-10(d) show a diffraction version
of this scenario. This scenario also is further discussed in Section 2.8 in
connection with an actual occultation taken by Global Positioning
System/Meteorology (GPS/MET) (see Figs. 2-15 and 2-16). Evidently, on this
particular occasion the tangency point of the ray(s) descended through a sharp
positive radial gradient in electron density at the bottom of a sporadic E-layer.

Multipath with caustics has been seen in radio occultation observations of
Uranus and Neptune [1,2]. When convective mixing of atmospheric gases plays
a minor role, layering is a plausible result. To a first approximation, the
multipath scenario shown in Fig. 2-2(c) probably occurred in the Uranus
occultation displayed in Fig. 1-11. It shows an open-loop power spectrum over
time, observed in 1986 from the Earth, of the Voyager 2 radio signal as the
spacecraft followed an occulting trajectory behind Uranus [1]. The power
spectrum over time is composed of contiguous power spectrum strips 10 s
wide. Over roughly 1 hour the signal from Voyager passed through Uranus’
atmosphere. During the 10- to 20-minute interval shown in Fig. 1-11, the signal
in its descent into the atmosphere encountered a layer composed of gases of
higher refractivity.

For an Earth limb sounder, one might expect to encounter this kind of
feature upon first contact of the tangency point of the ray with a marine layer in
the lower troposphere. However, for the Earth, the time interval for completion
of the transient would be measured in a few seconds rather than the several
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minutes shown in Fig. 1-11 for Uranus, but the Doppler spread between tones
would be comparable. We note that in Fig. 1-11, just prior to and just after the
epoch of first contact with the caustic, the signal power of the main ray is very
low. This suggests that it passed through a narrow transition region at the
boundary with a large gradient in refractivity and, consequently, is causing
severe defocusing.

A closed-loop tracking receiver is unlikely to deal adequately with the kind
of multipath scenarios shown here when its signal correlation and tracking-loop
feedback logic are predicated on encountering only singlet tones. Even the
phase and amplitude data from a receiver that tracks in the so-called “flywheel”
mode will complicate significantly the recovery process unless the trifurcation
and subsequent annihilation of these tones are properly accounted for or
effectively eliminated by preprocessing the data. In the flywheel mode, the
receiver uses its last several reliable phase measurements to extrapolate forward
in time to attempt to keep the radio frequency (RF) sample window centered in
Doppler space at the most likely location of the tone(s). If the receiver had been
using its last good estimate of the Doppler tone from the m ray for its
flywheeling forward, what does it do at the epoch #;, which is the end of the
line? To continue onward along the evolution of the b ray with time, does one
account for the integer cycle difference that has accumulated between the m
and b rays during the interval from #; to 73? Appendix F discusses the bias in
recovered refractivity that can result from missing cycles.

2.1.2 An Overview of Chapter 2

To apply a thin phase screen model for calculating signal amplitude and
phase observed by a LEO, we need a few concepts from geometric optics for
the actual atmosphere, which we assume here is spherical symmetric. This
includes the integral expression for refractive bending angle in terms of the
radial profile for the index of refraction, the Abel transform for recovering the
refractivity profile, and other related quantities. Geometric optics is used to
obtain the observed change in the refractive bending angle and phase delay as a
function of impact parameter due to any one of the discontinuity scenarios
described earlier. Then, we introduce two thin phase screen models and discuss
their use and their correspondence to the actual atmosphere. Multipath, caustics,
and shadow zones are discussed in the framework of a thin-screen model, first
in a geometric optics context and later in a wave-theory context. Next, to
account for diffraction effects in carrier phase and amplitude, we introduce into
the thin-screen model a particular scalar diffraction theory in the form of the
Rayleigh—Sommerfeld integral. To numerically evaluate this diffraction
integral, we introduce the stationary-phase concept and its role, not so much as
a stand-alone computation technique in terms of Fresnel integrals, but as an aid
for other computation techniques, and for assigning the appropriate phase
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profile to the thin-screen model. Numerical results for Fresnel diffraction from
a discontinuous refractivity profile then are presented. Also presented are the
diffraction effects from a continuous refractivity profile but with a
discontinuous lapse rate.

We then use thin-screen/scalar diffraction techniques developed here to
treat certain caustic, multipath, and shadow effects that can be observed by the
LEO as the ray path tangency point crosses an ionosphere layer; for examples,
see Figs. 2-15 and 2-16 in Section 2.8. We discuss the errors in the retrieved
refractivity and temperature profile that can result from use of a straight Abel
transform recovery algorithm without accounting for the deficiency in ray
theory for this case. Finally, in later sections, we briefly discuss the potential of
the Fresnel transform technique for enhanced resolution in thin atmosphere
conditions and sketch how it might be used in multipath situations. Use of a
scalar diffraction technique to sharpen the resolution of localized features is
briefly covered.

2.2 Geometric Optics in a Spherical Medium

To use a thin-screen model to calculate these effects, we need some
concepts from geometric optics applicable to the actual atmosphere. We need to
express the refractive bending angle as a function of the index of refraction, and
we need a few other related concepts.

The refractive bending angle observed by a LEO during an occultation is
obtained directly from the Doppler observations made by the LEO and the
precision orbit determination (POD) information about the satellites.
Appendix A, see Figs. A-2 and A-3 and Egs. (A-8) through (A-18), derives the
relationship between the excess Doppler and the atmosphere-induced refractive
bending angle o of a ray from the occulting GPS satellite. The excess Doppler
is the observed Doppler minus the Doppler due to the relative motion between
the LEO and the observed GPS satellite. Both the case where the GPS satellite
is located at a finite distance from the Earth’s limb and the limiting case where
it is infinitely afar are given. The latter case' yields a particularly simple near-
linear relationship between ¢ and the excess Doppler fj,, which is given by

My =V, 0+0[a?] 2.2-1)

! Placing the occulted GPS satellite at infinity is adequate for our purpose, but not for
treating actual data. For the finite case, the bending angle equals the sum of two
deflection angles, 0, and &, . &, is the deflection angle of the ray asymptote at the
GPS satellite (see Fig. A-3) relative to the straight line passing through the positions of
the GPS and LEO satellites; J, is the deflection angle at the LEO. In practice J, is
roughly an order of magnitude larger than . These deflection angles are mutually
constrained by ray tracing or by Bouguer’s law when spherical symmetry applies.
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Here A is the wavelength of the carrier of the observed signal, and V| is the
component of the cross-velocity of the straight-line path between the GPS and
LEO satellites lying in the propagation plane, the plane containing the GPS
satellite, the LEO, and the ray. In Figs. 2-2 and 2-3, V|, =—dh,, /dt for a
setting occultation. When the LEO orbital altitude is about 10 percent of the
Earth’s radius, |VL| =2.5 km/s +20%. The 20 percent spread results from the

typical range of obliquity values between the propagation and orbit planes in
the set of occultations used for data analysis. V| is essentially constant over the
relatively short duration of an occultation. For the Earth’s atmosphere at sea
level, o is about 20 mrad for the dry air component; thus, the range of fj, is a
few hundred hertz for dry air. Water vapor in the lower troposphere can double
or triple this range.

Geometric optics as a ray theory can be developed from different
approaches. One approach is to start from a wave representation based on
Maxwell’s equations for a harmonic wave in a refracting medium, and then take
its limiting form as the wavelength of the wave is made to approach zero. The
general properties of rays, such as ray path curvature as a function of refractive
gradient, reflection coefficients, and so on, can be deduced. An account of this
approach is given in [3]. Another approach is to start from Fermat’s stationary-
phase principle for rays in general and apply the Calculus of Variations to the
path integral for the phase delay along the ray. Each of the rays in Fig. 2-3
satisfies Fermat’s principle, which requires that each must be a path of
stationary phase. In other words, the total phase accumulation or delay along
the path from beginning to end would undergo only a second-order variation as

Thin Screen

s

Fig. 2-3. Thin-screen geometry for a LEO. The figure shows multiple
rays, with different bending angle and impact parameter values, all con-
verging at the LEO.
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a function of a nearby trial deviation of the path from the actual path, while still
satisfying the boundary conditions. Usually the stationary value of the phase
delay along a ray is a local minimum. However, for the scenarios shown in
Fig. 2-2 the a ray, unlike the m and b rays, is a path that provides a local
maximum in the phase delay. We know from the Calculus of Variations that
this can happen when a ray at some interior point along its path comes in
contact with the envelope associated with the family of rays whose members
are generated by varying some parameter, such as the impact parameter of a
ray. In optics this envelope is known as the caustic, or burning curve.
Appendix A provides a brief introduction to ray theory using the stationary-
phase concept. Appendix B discusses the properties of a caustic.

From Egs. A-1 through A-5 in Appendix A, it follows that the bending
angle a(r) and the impact parameter a in a locally spherical symmetric

atmosphere are given by

an)=—2af 2L, (2.2-2a)

e dr 22 _ g

a = n(r)r = n(r)rsiny = constant (2.2-2b)

where y is the angle between the radius vector and the tangent vector of the
ray. When we place the GPS satellite at an infinite distance, then y=0+o.
The quantity r is the radial distance of the turning point of the ray or its point
of tangency with the Earth’s limb (Fig. 2-1). The quantity n(r)=1+ N(r) is the
index of refraction, and N(r) is the refractivity. (For convenience, we define
N=n-1, not N= 106(n—1); the latter is the customary definition of
refractivity.) The quantity a in Eq. (2.2-2b) is the so-called impact parameter,
and it is a ray-specific quantity. When spherical symmetry applies, it has a
constant value when evaluated at any point (r,0) on a specific ray. The
relationship given in Eq. (2.2-2b) for a is known as Bouguer’s law. This is
analogous to the conservation of angular momentum in a central force field.
Bouguer’s law is the spherical equivalent of Snell’s law.

For the spherical symmetry assumed here, and when at a specific
observational epoch there is a unique ray producing the excess Doppler, then
Egs. (2.2-1) and (2.2-2) show that the Doppler observations between the LEO
and occulted GPS satellite, plus the POD information about the satellites, yield
both the bending angle o for the ray and its impact parameter a. Hence, one
can form a data sequence (aK,aK), k=12,-- .M, from the excess Doppler

sequence obtained from the M observations made over the occultation episode.
This sequence (o, a, ) describes the evolution over time of the bending angle

and impact parameter for a specific family of locally unique rays that are
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generated by the orbital motions of the satellites. When the geometry does not
admit spherical symmetry, then the equations and procedures for recovering
bending angle o and ray path tangency point 7 involve ray-tracing techniques,

but they lead to the same general result, a data sequence (¢, ). We avoid

this complication here.

When spherical symmetry does apply, and there is a unique ray from the
GPS satellite to the LEO at each epoch in the observational sequence, one can
invoke the Abel transform to recover the radial profile of the refractivity from
the sequence (., a, ). This is given by (see Appendix A)

N(a) = logn(a) = %J:;(—g)zdéj (2.2-3)
/\“J‘

—da

Here (&) is the functional form of the bending angle versus impact parameter
¢ obtained from the data sequence (o, a,.), kK =1,2,---,M . Implicit in the form
for the Abel transform given in Eq. (2.2-3) is the vanishing of the bending angle
for large values of the impact parameter, that is, () >0 as & — oo.

The gradient of n(r) in Eq. (2.2-2a) is given by dn/dr. But, note that this
integral readily allows a change of variable. For example, we can define
another variable p = kn(r)r; Eq. (2.2-2) becomes

a(p*):—2p*jwlj—n%dp, P« =ka= psiny (2.2-2)
P+ N p { —
NP P

The functional form for the bending angle is transformed from () to o(p-),
which is acceptable provided we know or can recover the functional form for
n(p), and provided no super-refractive zones exist. The integrals in
Egs. (2.2-2") and (2.2-3) form an Abel transform pair.

A problem arises when multiple rays from the same GPS satellite meet at
the LEO, which is shown in Fig. 2-3. In this case, the signal arriving at the LEO
is a composite of these multiple rays. The superposition of these rays causes
interference in the phase and amplitude of the signal. Spectral techniques are
useful for unraveling the excess Doppler frequency and amplitude for each
interfering ray. We next address multipath in a ray theoretic context.

2.21 Multipath, Shadow Zones, and Caustics According to
Geometric Optics

A polarity change in the gradient of the bending angle is an almost sure
sign that multipath and/or shadow effects will be seen, particularly if the
observer is far from the location of these reversals in the gradient. Diffraction
effects also are likely to be present in at least part of the observations if the
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change is sharp enough. Figure 2-3 provides the basic geometry for a particular
thin-screen model, which we discuss later. Here 4 is the altitude (relative to an
arbitrary but defined reference altitude R, say, sea level) of a point in a thin
screen through which the ray from the occulted GPS satellite passes on its way
to the LEO. The screen in this figure is oriented perpendicularly to the straight
line between the LEO and the GPS satellite; A, is the altitude in the thin
screen of the intersection of the LEO—GPS line. It varies nearly linearly with
time during an occultation episode, about 1 minute in duration for the neutral
atmosphere. Figure 2-3 shows a collimated beam from the GPS satellite to the
left of the screen, which is tantamount to setting the GPS distance D, from the
Earth’s limb to infinity. It is appropriate in this case instead to use for LEO
limb distance the quantity D, which is the reduced distance between the LEO
and the thin screen minus a small quantity ac. It is given by

-1 -1 -1
D' =D '+ D (2.2-4)

where D, is essentially the distance of the LEO from the limb of the Earth, and
similarly for D,. In calculating the phase at the LEO, use of the reduced
distance D instead of D, accounts for the extra phase from the wave front
curvature resulting from the finite distance D, of the GPS satellite from the
Earth’s limb. D, is about 4 Earth radii, and D, is about 1/2 an Earth radius;
therefore, D is about 10 percent smaller than D, .

From the geometry in Fig. 2-3, we see that /4 denotes the height at which
the asymptote of the ray intersects the thin screen. From Bouguer’s law in
Eq. (2.2-2), we have the relationship for this height / in the thin screen:

h+R=asecax=rsin(6+a)seca =

r(sin@+cos@tanco) =~ g + R+rcosftano

o (2.2-5)

h=h, +Da(h)+0lo?], D=rcos(0+a)

Here the bending angle has been expressed as a function of thin-screen altitude

o(h). We show later that when d(ocZ) / da is less than a critical value, there is a
one-to-one relationship between 4 and the impact parameter a. In this case, it is
straightforward to transfer between ¢(h) and o(a).

Figure 2-3 shows an example where three altitudes result in bending angles
so that the rays from these particular tangent points with the Earth’s limb all
simultaneously converge at the LEO. Figure 2-4 shows a hypothetical curve for
h, versus h in the neighborhood of this multipath zone that might correspond

to the multiple rays shown in Fig. 2-3. This depicts a classic multipath situation.
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ha(2)
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ht)  hy h h(2)

Fig. 2-4. Hypothetical curve showing thin-screen alti-
tudes h versus h g in the neighborhood of a multipath

zone. Multipath occurs within the range h (1) < h g <
h g(2), h(1) < h < h(2), and H: and h, mark the caustic
contact altitudes, where dh g/ dh=0.

As discussed earlier in connection with Fig. 2-2, the condition dh,, /dh=0
will be found to hold at two or more altitudes in the neighborhood defined by
the turning-point altitudes for these three rays. These altitudes mark the contact
points with the envelope surface to the ray family, the vertical continuum of ray
paths generated by the evolution of A, over time. In the immediate
neighborhood about a point (hT,hZG) where dh,, /dh=0, h has a locally
quadratic (or higher) dependence on 4. This results in two rays from altitudes
slightly above and below h' that concurrently meet at the LEO when 7, is on
the concave side of the h,, versus A curve, and none from these two ray
families when 4, is on the convex side. This is depicted in Fig. 2-4 at each of
the two caustic contact points. This is multipath in its simplest form.

Taking the reciprocal of dh,, / dh, we have dh/dh,, — > at (hT,hZG); so,
here there is a singularity in the density of ray paths arriving at the LEO.
Caustics occur near here. Therefore, whenever the gradient of the bending angle
do [ dh, which is nominally negative for the Earth’s atmosphere, takes the
value da / dh =D, about 0.3 mrad/km, then dh, | dh will be zero.

In Appendix A it is shown that the defocusing function for the atmosphere
is given by

1 do

Zil—DE (2.2-6)
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The defocusing function provides a measure of the dispersal of the rays caused
by the refractive gradient. Therefore, the defocusing function gives the relative
amplitude of a ray at the LEO as a result of the ray having passed through the
atmosphere compared to the amplitude that would have been obtained without
the atmosphere. From Eq. (2.2-5) we see that in the screen § =dh/dh,,.

Appendix A also derives the vertical radius of the first Fresnel zone . (h),
which is given by

7 =JADIC| (2.2-7)

The condition § ~'=0 marks the first contact with a caustic in geometric
optics; rainbows” occur at such points. It also marks the first (or last) encounter
of the LEO with the multiple-ray system. This condition also corresponds to the
vertical diameter of the first Fresnel zone growing infinite. Therefore,
geometric optics predicts an infinite amplitude at this point, but no such event is
observed there, partially because of the failure of geometric optics in the
neighborhood of this first contact point. The first caustic contact point
corresponds to a point where not only is the phase delay along each of the
multiple rays stationary with respect to a path variation, for example, the impact
parameter of the path, but its second-order variation also is zero.

Geometric optics is based on a second-order stationary-phase theory. A
non-zero second-order variation is required in this theory. A third-order theory
is needed to handle caustics. Here, the use of the words “ray” or “path of
stationary phase” implicitly assumes that a geometric optics treatment is valid.
Thus, necessary conditions for validity of a geometric optics treatment are that
the rays exist (see Footnote 3). Also, the altitude differences of the multipath
rays at their tangency points should significantly exceed the diameter of the
first Fresnel zone, and caustics are to be avoided.

A necessary condition for the existence of a caustic is that the defocusing
factor { — o at some altitude. A caustic surface will be generated by the

* The rainbow is a caustic phenomenon. The altitude / of the first ray making caustic
contact in Figure 2-2(b) (at ¢,) corresponds for a raindrop to the value of the impact
parameter of the incident ray from the Sun that gives rise to a rainbow. The scattering
angle of a ray, after being refracted upon entering the raindrop, internally reflected, and
refracted again upon exiting, depends on the impact parameter of the ray. This
scattering angle becomes stationary when the impact parameter is located about 85%
(for the primary rainbow) of the raindrop radius out from the center. The impact
parameters of the Sun’s rays are uniformly distributed prior to hitting the raindrop. But
the exiting rays with impact parameter values in the nearby neighborhood about this
85% value “pile up” at the stationary scattering angle, about 138 deg. Therefore, the
amplitudes of these rays add up constructively because they all have incurred
essentially the same phase accumulation at the observer. A “caustic” ray is the result.



90 Chapter 2

continuum of ray paths whose points of tangency lie in some neighborhood
around this critical altitude. When a caustic does occur, multipath situations
also will arise where two or more ray paths arrive at the LEO from different
altitudes. Appendix B gives a short discussion of caustics in a geometric optics
context.

Caustics also are predicted in a wave theory framework, but there their
form is softened and, although brightening is predicted, the infinite amplitude
predicted by (second-order) geometric optics does not appear. Caustics in a
wave theory framework are discussed in Chapters 3 and 5.

2.2.2 Thin-Atmosphere Conditions

To calculate the effects of the discontinuities related to refractivity, we use
certain approximations that are applicable to a thin atmosphere. By a “thin
atmosphere” we mean that the atmosphere is thin geometrically and optically.
Specifically, the characteristic length of the ray path through the atmosphere L
defined by

2 sNIr@lds 2,0,

- vy
J-ON[r(s)]ds \z(1-p)

(2.2-8)

satisfies the condition that L /7, << 1. Here s is arc length along the ray path
measured from the point of tangency. The second expression on the right-hand
side (RHS) of Eq. (2.2-8) applies to an atmosphere with an exponentially
decreasing refractivity profile and with a scale height H, . See Appendix A for

more detail.
The parameter f3 is defined by

p=-Ldn . M) (2.2-9)

ndr Hp

where the second expression applies to an exponential model for refractivity.
This parameter f3 is essentially the ratio of the impact parameter of a ray to its
radius of curvature. It must satisfy the condition B<<1 or, equivalently,
d(rn) [ dr >>0. In effect, the radius of curvature of the ray at any point must be
much greater than the local radius of curvature of the “iso-refractivity” or
equipotential surface there. Super-refractivity situations where f>1 over
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substantive’ path lengths are specifically excluded here for the reference
refractivity profile. In the case of the Earth, we have the happy circumstance
that for dry air L /1, =0.05. At the Earth’s surface the dry air component of 8
is about 0.2, and at the tropopause it typically is around 0.05. On the other
hand, across a sharp marine layer boundary, 8 can exceed unity.

Equation (2.2-8) accounts for first-order ray path curvature effects through
the term (1- ,B)l/ 2 in the denominator. One can calculate ray path curvature
effects once the refractivity profile is specified [4]. If s is arc length along the
ray from its tangency point, then to first order the radial coordinate of a point
on the ray is given by

S2

25

r=r+(1-p) (2.2-10)

With =0, this gives the straight-line relationship between chord length and
radial coordinate. With 3> 0, the ray is bent radially inward. Both Egs. (2.2-8)
and (2.2-10) show that the thin atmosphere test fails when [ nears or exceeds
unity.

Atmospheric refractivity for the Earth may be classified in increasing
difficulty as (1) locally spherical symmetric without multipath at the LEO,
(2) locally spherical symmetric with multipath at the LEO, (3) not locally
spherical symmetric because of horizontal variations, and (4) time variable
through turbulence, advection, and so on. Our reference refractivity profile will
satisfy the thin atmosphere conditions, and it will be spherical symmetric
without multipath. We will explicitly avoid locally harsh refractivity
conditions, such as critical refractivity conditions found at times in the lower
troposphere, other than the discontinuities under study, which actually do
include super-refractivity cases. Our discontinuities or sharp transitions are
assumed to be sufficiently mild that we need not account via the Fresnel
formulas for reflections from the boundary, nor for Love or Rayleigh-like
waves propagating along or near the boundary surface, nor for evanescent
waves. We also assume that our reference atmosphere is temporally smooth and

? The validity of Eq. (2.2-2) requires that rn(r) > a along the ray path. This condition is
required to obtain real solutions to the Euler differential equation (see Appendix A),
which all ray paths must satisfy in a spherical symmetric medium. This condition

rn(r) = a must hold at all points along the ray path to obtain a stationary-phase path
satisfying the boundary conditions and passing through the turning point at 7,. In other
words, if this condition is not satisfied, then there is no ray with the impact parameter
value a satisfying the boundary conditions. This global condition translates into a local
necessary condition (but not sufficient; see Section 6.4.2) that requires that 8 <1 in
some neighborhood about a turning point.
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does not cause appreciable scintillation (although scintillation is almost always
present to some degree in sounding data). Even a cursory review of wave
and/or ray theory literature in such disparate fields as electrodynamics and
seismology will reveal that propagation across a boundary is potentially a very
complicated problem without simplifying assumptions, such as those in the
foregoing discussion.

We note from Eq. (2.2-8) that L is about 400 km for dry air, but the along-
track resolution OL is closer to

121 6r | or
oL=2 7% _025 | ¥ 2.2-11)
VI-8 1B

where Or is the vertical resolution. This is the path length in a shell of thickness
or, essentially the chord length corrected to first order for ray path curvature
(1- ,B)_l/ 2, Using the Fresnel vertical diameter for or, we obtain about 180 km
at sea level for dry air and 280 km in the stratosphere. Because both the
defocusing factor { and the ray path curvature parameter 8 depend strongly on
the refractivity and its gradient, oL for the water-vapor-laden lower troposphere
can vary widely. Near-super-refractivity situations where 8 —1 render the
above definition of dL less meaningful.

2.3 Thin Phase Screen Models

Diffraction effects occur to a varying degree whenever a sharp change in
refractivity or in one of its derivatives occurs. Sommerfeld defined the word
“diffraction” more than a century ago to cover those effects not predicted by ray
theory. Because diffraction effects for a spherical geometry are difficult to
calculate, one often attempts to substitute a simpler model that yields basic ray
theory results plus diffraction effects, and which has acceptable agreement with
rigorous wave theory results. In a thin-screen model, one substitutes for the
atmosphere a thin-screen proxy, nominally transparent, through which any
passing ray experiences a position-dependent phase delay upon emerging from
the screen. The relationship between position in a thin screen and altitude of the
turning point of the actual ray in the atmosphere depends on the choice of
screen and on the index of refraction profile. The thin-screen model is a
surrogate for the transmission effects of the real atmosphere on the traversing
GPS signal. One chooses a phase profile for the thin screen that attempts to
match the LEO-observed phase delay profile. This is accomplished by
assigning a phase delay, embedded in the thin screen at a given thin-screen
position, that corresponds to the actual atmosphere-induced phase delay
predicted by geometric optics. If a certain thin atmosphere condition holds, the
assigned phase delay values in the screen can be made to be a single-valued
function of the thin-screen position. In this case, the assignment leads to the
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proper total refractive bending angle «(a) when a path of stationary phase is
followed from the GPS satellite along the incoming ray asymptote through the
thin screen and along the outgoing ray asymptote to the LEO. When this thin
atmosphere condition is satisfied, the profile of this phase delay in the thin-
screen yields the LEO-observed phase and Doppler of the primary rays
(excluding, for example, reflections) predicted by geometric optics for the
actual atmosphere, including multipath and shadow regions where appropriate.
This thin-screen model then is used to calculate the observed diffraction effects
using a scalar diffraction theory such as the Rayleigh—Sommerfeld integral [5].

The thin-screen model has been discussed in many references over the
years, where it has been applied to scintillation and diffraction studies [6—11].
For phase scintillation applications, [9] also discusses the wave propagation
coherency conditions that an atmosphere with a finite scale height must satisfy
in order for the thin-screen model to remain valid. These coherency conditions
can be related in part to the “thin atmosphere” conditions given earlier in
Section 2.2, namely, that 3 and L/, should be small.

Chapter 1 points out that the thin-screen concept can be extended to include
multiple thin screens in tandem; see, for example, [10,11]. Here one replaces
propagation through the actual atmosphere with field values holding on m thin
screens, which are separated along the axis of propagation by some assigned
distance Dy, k = 1,2,--, m. The propagation of the wave between successive
screens is accomplished using the Fresnel-Kirchoff scalar diffraction integral
that applies asymptotically when the wavelength of the propagated wave
becomes a very small fraction of the scale of the screens. The actual
inhomogeneous medium in between screens is replaced by a homogeneous
medium, but the phase accumulation that would have resulted is lumped into an
extra position-dependent phase increment that is added to the wave at each
screen. In this way the field values for amplitude and phase on one plane are
mapped to the field values on the next plane, and so on. This approach has been
shown to work well in a “forward” propagation process through an
inhomogeneous medium.

2.3.1 The Helmholtz—Kirchoff Integral Theorem

This theorem provides the basis for scalar diffraction theory [3,12]. It may
be used in either a “backward” or “forward” propagation mode, i.e., toward an
emitter or away from it. In the backward mode, the scalar diffraction integral is
used to map the phase and amplitude sequences measured by the LEO through
the vacuum to an equivalent surface much closer to the Earth’s limb.
Appendix A derives both the forward and backward modes from the
Helmholtz—Kirchoff theorem. From Fig. 2-2 it is clear that, if we could move
the surface containing the LEO and its vertical motion to another surface much
closer to the limb, fewer rays would cross each other between the limb and the
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closer surface. A virtual LEO moving in the closer surface would experience
reduced multipath (see Fig. 1-13). The refractivity profile of the real
atmosphere is recovered from the phase and amplitude profiles mapped from
the LEO trajectory to the new closer surface. The so-called “back plane”
propagation method is one example of this technique [13—15]. Here the chosen
surface for convenience is planar, actually a line in coplanar propagation, and it
is oriented perpendicular to the LEO—GPS line, or perhaps canted slightly. In
this closer “plane” with hopefully far fewer multipath episodes, one derives
bending-angle and impact parameter profiles. From Eq. (2.2-1) it follows that
dop =koadsg, where @p is the mapped phase in the back plane mounted
perpendicular to the LEO—GPS line, and dsg is an incremental arc length along
the plane. Therefore, the gradient of the mapped phase along this plane yields
the bending angle in that back plane, from Bouguer’s law the impact parameter.
The Abel transform then yields the refractivity profile.

2.3.2 The Space Curve for Impact Parameter

There is nothing in the Helmholtz—Kirchoff integral theorem (see
Appendix A), the basis for scalar diffraction theory, that requires planarity for
the phase screen; it could be a curved surface. Or, if it is planar, it need not be
mounted perpendicular to the LEO—GPS line; these are matters of convenience.
We could as well adopt as a canting angle o, =a(a) for the clockwise
rotation. This is suggested in [14]. In this case, the “height” 4 in Eq. (2.2-5)
becomes h=a—R. It is strictly the impact parameter minus the reference
radius, and it becomes an arc length along a curve defined by the intersection of
the plane of propagation with the impact parameter surface. This space curve
for the impact parameter in general is not straight. Since there is a one-to-one
relationship between impact parameter and bending angle when spherical
symmetry holds, then we are assured that s(o) will be monotonic. Of course,
we don’t know a priori the value of «,, = a(a) and, therefore, its shape without
first processing the observations.

We show one way to recover the impact parameter curve in space
coordinates from the LEO phase and amplitude observations. To simplify the
geometry here we assume that the occulted GPS satellite is infinitely far in the
0 = & direction; therefore, the angle y in Bouguer’s law in Eq. (2.2-2) between
the radius vector and the tangent vector of the ray becomes y =0+ . The
finite case is a straightforward extension of the following, but it requires more
care in handling the relative motion of the satellites during the occultation.

The phase delay ¢ along the ray % from its turning point at (7:,6:) to a
point (r,0) can be obtained from its defining integral:
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r A r 2
¢:=kL%nds:k£_n@1+(r632dr:klu——zﬁg;—;dr (2.3-1)

vnr —a

where in the last integral we have used Bouguer’s law in Eq. (2.2-2) to rewrite
dO /dr in terms of the impact parameter. We assume that the point (r,0) is out
of the atmosphere where n=1. By integrating by parts and using Eq. (2.2-2),
we obtain for the phase at (r,0)

o= k(r cos(@+a)+ac+ J.Noc( p)dp),

a=rsin(0+x), a=uo(a)

(2.3-2)

Setting ¢ =0, @ — krcos@, which is the cumulative phase along a planar
wave traveling in the z direction (see Fig. 2-5) from the line defined by
0 =m /2. Therefore, ¢ —krcos@ is the excess phase caused by the refractivity.
If we hold r and 6 fixed, then we note from Eq. (2.3-2) that

Qﬂzkﬂﬂég+a+azg—a150 (2.3-3)
da da

da

LEO Orbit

A
z

.
>

Fig. 2-5. Schematic of the impact parameter space curve
(ry, 0,), which is traced out by the tip of vector r,(a) as a
is varied. Bouguer's law requires that Ir,] = a and that
r,- T=0, where Tis the unit tangent vector of the ray pass-
ing through the end point of r, (a).
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which merely underscores the stationary property of the phase on a ray, and the
difficulty in using phase directly in ray theory to recover the impact parameter
of the ray.

If we vary r and 6 in Eq. (2.3-2), holding « fixed, we obtain

de = k(—ad6 + cos(0 + a)dr) (2.3-4)

We now set r=a and 6 =0, =7 /2-a(a). By doing so, we have positioned
our point (r,0) at the tip of the impact parameter vector r,(a). This is indicated

in Fig. 2-5, which shows the geometry (but definitely not to scale) of the impact
parameter space curve (7,,6,) with r, =a. The form for r,(a) in terms of unit

Cartesian vectors x and Z is given by
r,(a) = a(Zsina(a)+ X cos a(a)) (2.3-3)

Bouguer’s law requires that |ra (a)| =r,=a and that r,(a) is perpendicular to
T(a)=zcoso(a)— xsina(a), the unit tangent vector of the ray passing through
the tip of r,(a). At this point (a,@a), a small change in position alters the phase
by an amount d¢. According to Eq. (2.3-4), to first order this is given by

d9lo_,. 1o =—akdB +0dr (2.3-6)

There is no first-order variation in phase in the radial direction because the ray
through the tip of r,(a) is perpendicular to r,(a).

This impact parameter vector r,(a) traces out the impact parameter space
curve (r,,0,), as indicated by the schematic example in Fig. 2-5. The
incremental arc length vector ds, along this space curve and the angle vy,
between ds, and r,(a) are given by

dr,

ds, = ” da = (f‘a - Oua(x')da, r,=r,a

| e (2.3-7)
= ——, SIn =

cosy,=r,- —_— v, =—F/———
ds, 1+ (ac’)* 1+ (ao’)?

where ' =da /da; also, 1, and éa are unit orthogonal vectors in the rotating
frame. It follows that, except at super-refractivity points, the impact parameter
values are denumerated uniquely along the curve traced out by r,(a) as a is
varied. With spherical symmetry, a unique relationship holds between a and
o, except at a super-refractivity point, which is discussed later.

To generate the impact parameter curve, we start from a known point on the
curve where no multipath exists and, assuming that it is a high point, we
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continue downward. Let o(a;,6,), 6, =7 /2—a(a;) denote such a known

point, as shown in Fig.2-5. We assume that, in addition to knowing
unambiguously the value of o at (a,6;), we also know the value of o’. The
back propagation diffraction integral, for coplanar propagating in a vacuum the
phase and amplitude measurements made by the LEO to another point at r; (see
Eq. (A-22) in Appendix A), is given by

li ¢ (E(r, , A
E(r)= \% C( rﬁg) exp(—ikri, )(#, -n(rL))]dsL (2.3-8)

where 1, =|r -1,

, I, denotes a point at the LEO, ds; denotes an incremental

arc length along the curve C defined by the trajectory of the LEO over which
observations were made during the occultation, and N(r,) is the outward unit
normal vector to the curve C. The intervening medium between points r, and
r; is taken as a vacuum. We apply this path integral using the LEO observations

to obtain the mapped phase and amplitude at the impact parameter point
r, =r,(a;). (There are several important details required in practice related to

establishing integration limits, preserving phase coherency, i.e., |51‘1L|<< A,

where Or, is the error in 7y, , over the span of the integral by accounting for the

relative satellite motion, and maintaining phase connection. We omit those
details here [13—15].) Even though this point r; =r,(q) is well inside the

refracting atmosphere, we treat it as a proxy curve in a vacuum, just like a thin
screen. Let the phase of the mapped field E (ra (aq )) from the diffraction integral

in Eq. (2.3-8) at this impact parameter point be designated as @, = (ﬁ(al). Next,
we alter 7,(a;) by a small amount to r,(a,) with a, =a; +Aa, as shown in
Fig. 2-5 with Aa<0. It follows that a first approximation for r, (az) is given
by

r,(ay)=r,(a)+7, Aa—Tia,;A0 (2.3-9)

where T} =T (al) is the unit tangent vector in the direction of the ray passing
through the point (@,60,), 6; =n/2-0(a;). As a zeroth approximation for
A6, we have AQ =—0a'(a;)Aa. To this provisional point for 7,(a,) at
(al +Aa, 0, +A9(0)), we use the diffraction integral again to obtain the phase
@0) from the mapped complex field E(al +Aa, 6, +A6(O)). Taking the
difference in the mapped phases at (a;,6;) and at (a1+Aa,91+A9(0)),
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AGY = o —¢(a,), it follows from Eq. (2.3-5) that an updated estimate of
A0 is given by

ata A

AGL®
AoV =_2%2 g i+

2.3-10

ak 2 ( )
The updated estimate of 6, is given by 9&1) =0, TN Mapping the LEO
field again using the diffraction integral to the updated provisional point on the

impact parameter curve (az,Gél)) gives us (Bg). We again obtain from the
difference in mapped phases A@" = @S — @S, and use Eq. (2.3-10) to obtain
an updated value AO® . We iterate until convergence is achieved. This gives
the point (a,,6,) with a(a,)=m/2—6,. Note that at this new point (a,,6,)
we now have the converged phase (ﬁ(az) = gbz, the bending angle
a(ay)=a, =1 /2—-6,, and an updated value for o =—(¢, — @)/ a, to start
the next step at a; = a, + Aa. By this way of succession we generate the impact
parameter curve r,(a) over the range of impact parameter values relevant to the
occultation.

The most important aspect of this approach is that it facilitates direct
recovery of the refractivity profile. Since we now have recovered an
unambiguous bending-angle profile (a,(a)), we can use the Abel transform in
Eq. (2.2-2") to recover logn(a), and thence logn(r:) from a = rn(n).

If a super-refracting layer occurs at a given altitude range, then ray theory
imposes restrictions on the location of tangency points in and below the layer.
In a super-refracting layer located in the range r;, <r<r,, the condition
rdn/dr+n<0 holds. Here the radius of curvature of a ray would be shorter
than the local radius of curvature of the equipotential surface. For tangency
points in the layer and below it down to a certain critical altitude denoted by
r¢ <r;, aray could not escape in a spherical stratified medium. The ray with its
tangency point at the lower critical altitude 7 = r“ below the layer just manages
to pass through the layer and escape from its upper boundary at r =r, parallel

to it. This is analogous to the parallel path direction required by Snell’s law of a
refracted ray exiting a planar surface at the critical internal angle of incidence.
It follows from Bouguer’s law that the ray through this lower critical tangency
point below the layer has the same impact parameter value as the ray just
grazing the top of the layer where super-refractivity first sets in, i.e.,

n(r)re = n(r,)r,. (See Section 6.5.) These two rays have in general different

bending angles. Therefore, the impact parameter space curve has a
discontinuity in 8, i.e., two different bending angles, but with the same value

for the impact parameter. Hence, ds, /da— e, dx,/dz, — —tano(a). The
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break is initially parallel to the top ray just grazing the top of the super-
refractivity layer, and finally it is parallel to the emerging ray from the lower
critical tangency point below the bottom of the layer.

Ray theory alone cannot tell us about n(r) between the upper boundary of a
super-refracting layer at r=r, and the critical altitude below the lower

boundary at r =r¢ because no ray with its tangency point within these bounds
can exist in a spherical stratified medium. There is a hiatus within the bounds
r‘ <r. <r,. However, in practice a super-refractive layer tends to be relatively
thin, usually caused by a marine layer. (In radio transmission research, super-
refractivity is called ducting.) Therefore, one can use the recovered profiles for
n(r) above and below the super-refractivity zone r<r <r,, plus some
atmospheric physics, to estimate n(r) in between. In wave theory, this super-
refractive zone corresponds to the attenuation or tunneling part of the Airy
function of the first kind. Wave theory (Section 5.8) predicts a very weak but
non-zero field for this zone, analogous to the Fresnel decay in amplitude
observed behind a shadow boundary from a knife-edge. Section 2.7 includes a
discussion of a thin-screen/scalar diffraction model for the field observed at the
LEO from a super-refractive boundary, a limiting case where dn/dr — —eo
with An finite. Geometric optics already becomes inaccurate near these
boundaries at 1 <r¢ and at 5. >r, (see Fig. 2-12).

—u

The vertical resolution potential of the impact parameter space curve
approach is essentially that of wave theory. This is discussed in Chapters 1
and 6, but vertical resolution is more limited by departures from spherical
symmetry and other data processing properties [4,5].

Regarding caustic contact points, they have of course disappeared on the
r,(a) space curve for the impact parameter. The existence of a caustic contact
point is observer-position dependent, as with rainbows. From Bouguer’s law in
Eq. (2.2-2), if we alter 8 and take into account that a new ray with a new

impact parameter value will pass through that altered point (r,0 +d60), we have

da _ rcos(0+a)
dO0 1-rcos(0+o)a’

(2.3-11)

which is zero when we set r=a and =7 /2—0.

On the other hand, if we set 6=6, and r=r,, then we have the
defocusing-dependent relationship between a and 6., i.e.,
da/d6_ ={ 1, cos(6, +a), where &' =1-1, cos(6, +a)o’. da/df, can be
positive or negative depending on the sign of the defocusing factor {, . If we set
6, =6.1+86
da/dt=¢ 6,1, cos(6, +a). For anomalous rays, da/dt is positive for a

,» then we have the relationship between a and time,
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setting occultation; the impact parameter migrates upward with time for these
anomalous rays and at the same time downward for normal rays.

It follows that, for the purpose of forward propagating to the LEO the
perturbations in phase and amplitude caused by the atmospheric refractivity
perturbations, we could assign a phase profile ¢(a) to the impact parameter
space curve that is given from Eq. (2.3-2) by

o(a)= k(aa(a) + j:a( p)dp) (2.3-12)

where a(a) is the reference plus perturbed bending-angle profile calculated for
a spherical symmetric atmosphere from geometric optics. Moreover, given
a(a), we can generate the impact parameter space curve r,(a) from its
definition in Eq. (2.3-6). We show in Chapter 5 using a full-spectrum wave
theory (see Table 5-1) that the stationary values with respect to spectral number
of the spectral density function for phase delay in wave theory, when they exist,
are very closely equal to ¢(a), given in Eq. (2.3-12).

On the other hand, the impact parameter space curve generated by r,(a) is
likely to have a complicated shape in multipath situations. Computing the
distance from the r,(a) curve to the LEO is somewhat less convenient than
simply using the Fresnel approximation with a planar screen. This alternate
approach works well when the caustic avoidance condition is met, which relates
to the thin atmosphere conditions cited above in Egs. (2.2-8) and (2.2-9).

2.3.3 The Fresnel Phase Screen

Here we use a single planar thin-screen model to study the multipath and
diffraction processes from a single boundary embedded in a laminar
atmosphere possessing an otherwise smoothly varying radial gradient in
refractivity. The screen is nominally oriented orthogonal to the LEO-GPS line,
and the rays impinging on and emerging from the screen are the straight-line
asymptotes from the LEO and the GPS satellite (see Fig. 2-3). The relationship
between the altitudes & and A, is given in Eq. (2.2-5). The single thin-screen
model also could be applied to multiple but spherical symmetric boundaries,
given the bending-angle profile according to Snell’s law that results from a ray
transecting these multiple layers (see Appendix A). As an analysis technique
for recovery of the refractivity profile, the usefulness of the planar thin-screen
model is limited to thin atmospheres, conditions not always found, particularly
in the lower troposphere. Also, if atmospheric refractivity has significant
horizontal gradients, then the multiple-screen approach would be a better
choice.
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To maintain a one-to-one relationship between A and a, the condition
dh/da>0 must hold. It follows from Eq. (2.2-5) that this condition is
equivalent to the condition

@:seca(natanad—“jiuaad—“w (2.3-13)
da da da

which is equivalent to proscribing any caustics from occurring in the phase
screen (where dh/da=0). If o is given by an exponential refractivity model,
then it can be shown [see Eq. (2.3-18)] that the condition in Eq. (2.3-13) is
equivalent to the condition [3<(27t)_1/ 2~04. This is basically double the
refractive bending from dry air at sea level. In the lower troposphere, this
condition can readily be violated at a marine layer boundary, but as «
decreases secularly with altitude, Eq. (2.3-13) is more readily satisfied, even
with larger values of do/da. For h lying within the range of values where the
condition in Eq. (2.3-13) is violated, i.e., dh/da=1+ao(do /da)<0, there
are in general at least three values of bending angle that apply. The assignment
of a unique phase function to the screen [based on Eq. (2.3-7)] is not possible
for this range of /4 values.

On the other hand, we could cant the screen clockwise by a small angle
o Then, in that screen the altitude relationship would be
h=asec(ot—a,)—R, and the caustic avoidance condition becomes

1+a(0(—05m)0(’ >0, which might be easier to satisfy. The thin-screen phase

m-*

function to be given in Eq. (2.5-1c) would have an extra factor of cosc,,.

2.3.4 Suitability of the Thin-Screen Model for Diffraction Analysis

The value of the thin-screen approach for qualitative study of Fresnel
processes in the Earth’s atmosphere partially depends on the refractivity being
fairly stratified along equipotential surfaces as well as the thin screen being
viewed from afar. Also, the thin atmosphere condition should hold. If the
along-track inhomogeneity in refractivity is significant, then better results likely
would require a multi-screen approach. We know that the fidelity of the
diffraction results from the single thin-screen model is fairly good for a grazing
occultation in a uniform medium from an opaque surface—e.g., the Earth’s
limb [16]. When r, >> A, the diffraction effects from a three-dimensional
opaque object can be calculated by replacing the shadow zone on the surface of
that object with a disk perpendicular to the incident ray path and bounded by
the silhouette of the object [17]. However, a curved and nearly transparent
surface, across which a discontinuity in refractivity or in one of its derivatives
occurs, can support scattered rays that arise from a combination of external and
internal reflections and surface propagation (evanescent waves) yielding, for
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example, rainbow and waveguide effects. These would be more difficult to
model with the thin screen without first solving Maxwell’s equations or some
other wave propagation technique for the actual surface and surrounding
medium and then adopting a phase and amplitude profile for the thin screen that
corresponds to the actual observed phase and amplitude.

There are three-dimensional diffraction techniques discussed in the
literature that use both geometric and physical optics approaches to evaluate
scattering from a variety of relatively simple geometrical objects. Helmholtz’s
equation in a stratified medium, as a boundary value problem in Potential
Theory, can formally be solved for simple surfaces, such as spheres and
cylinders, and with relatively simple asymptotic boundary conditions, such as
incident planar electromagnetic waves. Solutions for scattering from a
conducting or a dielectric sphere in a uniform medium were developed starting
about 95 years ago by G. Mie, P. Debye, G. Watson, and others. Mie scattering
theory arose from the study of scattered light from droplets. Asymptotic
solutions to Helmholtz’s equation for r, >> A also were worked out during the
early decades of the 20th century, and parabolic equation techniques for wave
propagation have evolved greatly in the last 20 years [18].

Chapter 5 presents a wave theory approach that deals more rigorously with
the diffraction problem discussed here. There a discontinuity in a refraction-
related property is embedded in a spherical atmosphere possessing a significant
refractive gradient. A modified Mie scattering theory technique is developed to
deal with wave propagation through the refracting medium and across the
discontinuity. Good agreement holds for a single scattering surface between the
thin-screen results here and the more rigorous wave-theoretic results in
Chapter 5, under the caustic avoidance assumption in Eq. (2.3-13) and for
positions away from external reflections and rainbow caustics. The latter are
caustics arising from multiple internal reflections and refraction within the
sphere.

2.3.5 A Phase Profile for the Thin Screen

For the purpose of describing diffraction and multipath processes, we use
here the perpendicular mounted phase screen described above, keeping in mind
the possibility that phase screen caustics might occur. Let ¢(/#) be the nominal

thin-screen phase delay at a thin-screen altitude /4. We must now set this profile
using this model so that the predicted phase observed at the LEO matches the

actual atmosphere-induced phase delay observed by the LEO. Let l//(hLG,ﬁ) be
the cumulative phase observed by the LEO for a ray starting from the thin
screen at an arbitrary altitude /. From Fig. 2-3, we see that

w=ki+q= k\/(iz i)+ D + (i) (2.3-14)
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where k is the wave number of the ray, k=2m/A. In geometric optics, a ray
path is defined by the condition that the observed phase obtained from that path
is stationary. The stationary-phase condition on the ray path, from the GPS
satellite (infinitely afar) through the thin screen to the LEO, requires that

81///8?1 =0; that is,

W _phhe (9 4 na+ 92 20 (2.3-15)
oh I dh di

It follows for small bending angles that
o(h) = kj:sin(a(h' ))dh ﬁkjlwa(h' YK (2.3-16)

Here it is assumed that o(h) — 0 as & — . The LEO-observed stationary
phase is given by y(h)= l//[hLG,h(hLG)], where h is the altitude in the thin
screen providing the stationary-phase value for the LEO located at 4, and it is
given in terms of the impact parameter by Eq. (2.2-5). It may not be unique if
multipath is present. Comparing the phase ¢(4) in Eq. (2.3-16) for the planar
thin screen with the phase ¢(r,0) given in Eq. (2.3-2) for a ray at the point
(r,0), the difference is the term rcos(8 + @)+ aa. Through second order, this
term is just rcos@seca, the slant distance to the point / in the screen, which

1/2
from Eq. (2.3-14) is ((5_ ha) + Dz) :

2.3.6 Bending-Angle Perturbations

To apply the appropriate phase profile ¢(4) for the thin screen according to
Eq. (2.3-16), we need the appropriate form for (). It is convenient to break
o(r.) into two parts: the reference bending-angle profile a(r) from a reference
refractivity profile, and the perturbed component of the bending angle do(r:)
due to the refractivity-related discontinuity. For the reference profile, we use
the bending angle from an exponential profile for the atmospheric refractivity.
This is given by

n=1+N, exp[—r_ro] (2.3-17)
Hpo

Appendix A [Eq. (A-30)] derives the form for ¢(r:) that this refractivity profile
generates. It is given by
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a(r) = \/2’” N1+ (2 =1)B. +0.2857 +---) (2.3-18)

D=
Here N(r)=n(r)—1 and B=ln"r/nl=Nr/H,. This expression is very
accurate for thin atmospheres, i.e., B<=1/2.

We now need expressions for da(r:) for the different cases. A ray with its

point of tangency below the discontinuity travels through both the “+” and the
“~” regimes when its radius of curvature is greater than r,, as indicated in

Fig. 2-1. It follows that the bending angle observed by the LEO is given from
Eq. (2.2-2) by

a(n)=

Py r n_’j_ dr ”(n_’jJr dr n<r
’ [J(" Jorn? —@)? +J n) Jomi—@r)

ot (), r> T,

(2.3-19)

where a~ =rn" (1), and where n*(r) and n”(r) are functions describing the
index of refraction in the + and — regimes, respectively. Here n’=dn/dr. In
Eq. (2.3-10), o™ (1) is the bending angle for points of tangency of the ray lying
in the + regime where n*(r) applies, and, therefore, it is given by Eq. (2.2-2)
with n=n"(r) or by Eq. (2.3-18) when the refractivity profile is given by
Eq. (2.3-17). Equations (2.2-2) and (2.3-19) are valid only over integration
intervals where n(r) is differentiable. These equations have to be appended
with discrete Snell’s law terms at points where n(r) is discontinuous, and when

n(r,)>n"(r,), the inequality 5 <r, in Eq. (2.3-19) also must be amended to
account for critical refraction. For the case where the gradient of n(r) is at least
piecewise continuous, Eq. (2.3-19) can be recast into the form

a(r*)_a_(nk) =

_2a_J.M (”_,) ‘ 1 _(n_)_ ! dr, n.<r,
nl\n) Jatr?—@y? \n) @)’

o (r)—o (1), 1> r,

(2.3-20)
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Here, or”(5:) has a connotation similar to o (r:); i.e., it is the bending angle

that would be obtained from Eq. (2.2-2) if n (r) applied to the entire
atmosphere. Equation (2.3-20) may be generalized from a single boundary
geometry to the multiple-layer case (see Appendix A).

The evaluation of the integral in Eq. (2.3-20) requires differential
techniques, which will be found in Appendix A. Equation (2.3-20) involves

terms of the form o (1)—a " (x) plus additional terms to account for the
differences between a~, a*, and af = roni(ro). For example, if we write
at(n)= Ot[ pi,r*], where p is the parameter to be varied, then we can linearize

o (r)—a” (1) by the form
+ _ . do
%) — ) = —A 2.3-21
at(n)—a (1) P p ( )

It is shown in Appendix A, for example, that when p is the scale height,

o, & g O (_l + o[ﬁ,(pro)]j (2.3-22)

aH[’o HPa Hl’o 2

Also, when p is the normalized lapse rate y = (dT/dr)T_], which is a constant,
one obtains

oo 3
Sy et Ky =atl, (3 op i, )]) 03

In Appendix A, the integrals in Eq. (2.3-20) are computed to zeroth order in 3
(i.e., no ray path curvature corrections are applied, but for Case A, B is
included), and to first order in the discontinuous parameter of interest for the
three cases cited above: discontinuous refractivity, discontinuous scale height,
and discontinuous lapse rate. The reference refractivity and refractive bending-
angle profiles are given for a constant lapse rate by Eqs. (A-37) through (A-39).

2.3.7 Case A: A Discontinuity in Refractivity

Case A may be considered as a limiting case for a ray that crosses a very
sharp boundary, such as a well-delineated marine layer in the lower troposphere
or a sporadic E-layer in the ionosphere. Let n(r) have a discontinuity across the
surface r =r,. Then n(r) has the form

n(ry=n"(r)+ 7 (r—r,)[n* (N —n"(r)] (2.3-24)



106 Chapter 2

where 7 (r—ro) is the Heaviside function and n"(r) and n”(r) are well-

behaved reference functions, as obtained, for example, from Egs. (A-37) and
(A-38). Therefore, the gradient of n(r) has the form

dn _dn”
dr dr

+ .7 (r-,

o

)[ dc}li: - d;_r_} +8(r=1,) " (r,)=n"(r,)]  (2.3-25)

where 6(r —r,) is the Dirac delta function. Let o be defined by

RN Ul RO (2.3-26)

where H, is the pressure scale height at =7, It can be shown (Appendix A)

that an expression for Eq. (2.3-20) valid to first order in AN but without ray
path curvature corrections is given by

a(n)—a (r)= a_(ro)Kl + %)F(m) - F(G)}

o

+2 sin—l{r*"j j - sin_l(r—*) L R<F<r, (23-27)
r()n() r()

OC+(V*)_OZ_(V*), K>,

where AN, =n"(r,)—n"(r,) and where F(x) is given by

F(x) = (1—erf(x))exp(x?) (2.3-28)

The quantity o, is given by

o2=0> +(AN 0 ][N—r] (2.3-29)

N, \ ),

which is essentially equal to o, except near 0 =0. The second term in
Eq. (2.3-29) is just the fractional change in refractivity times the ratio of 7, to
the radius of curvature of the ray, both of which are nominally small quantities.
When AN, <0, o, =0 corresponds to the critical internal reflection condition
and 7, the maximum value of r at this critical point, is given by
F=rnt(r,)/n(r,)=r,(1+AN,). In geometric optics, no rays exist from the
GPS satellite to the LEO with turning points located in the interval 7 <rn <7, .
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One can improve the accuracy of Eq. (2.3-27) by including bending along
the ray path of integration in Eq. (2.3-20); a power series in 8 would result.
Equation (A-49) in Appendix A accounts for most of the first-order bending for
Case A.

Figure 2-6(a) shows «a(r)—a (r) near r=r, based on a numerical
integration of Eq. (2.2-2a) plus the Snell term. The exponential refractivity
profile given in Eq. (2.3-17) is used for the reference. The values of the
reference parameters used for this figure are N, =200 x 107, r,—Rp = 3km,

Hpa =7km, y=0,and AN, /N, =-1/20. Most of the jump in « arises from

the Snell term: Aa =2(-2AN,, )1/2.

2.3.8 Case B: A Discontinuity in Scale Height

Let AH, denote a discontinuity in a piecewise constant pressure scale
o

height, which occurs across the surface r =r,. In this case, the gradient of n(r)
is discontinuous across this surface, but n(r) is differentiable at interior points
of the integration intervals defined by Eq. (2.3-20). From Appendix A,
Egs. (A-44) and (A-45), it can be shown that to first order in AH P

ar)—o (1x) =

2
AH AH
— P Of(;;J[(KH -0’ )F(G) +i} +0 Po 1] i< r, (2.3-30)
Hy, T Hy,

o (r)—o (1), 1> 7,
where K, is given by Eq.(2.3-22) for y=0, and 02:(1’0—1‘*)/Hp0.
Appendix A also discusses the ¥y #O0case. Depending on the physical
circumstances present at a boundary layer in the real atmosphere, one could use
a linear combination of Egs. (2.3-27) and (2.3-30) to model the effect of a
discontinuity in temperature or a boundary demarcating a lower regime
containing water vapor. The values of the parameters used in Fig. 2-6(b) are

o (r,)=5.44 mrad, AH,|/H,=-1/7, r,—Rg=10 km, H, =7 km, and
Y =0.
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Fig. 2-6. Perturbations in bending angle profile for dif-
ferent refractivity scenarios: (a) perturbation in bending
angle for Case A; no rays exist in the super-refractivity
region where r, — 79 m < r« < r,; (b) perturbation for
Case B; and (c) perturbation for Case C. All figures use
an exponential reference refractivity profile.
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2.3.9 Case C: A Discontinuity in Lapse Rate

Let Ay denote a discontinuity in the piecewise constant normalized lapse
rate across the surface r =r,. In this case, the gradient of n(r) is discontinuous
across this surface, but n(r) is differentiable at all interior points of the
integration. From Appendix A, Eqgs. (A-44) and (A-45), it follows that
Eq. (2.3-20) becomes to first order in (A)/H ’y )

O!(r*)—a_(r*) =

_ 3()'2 0'4 1 (50 0.3
(N’Hpa )OC (r, )KK;/ + N + TJF(O-) - w_%(T + TH’ n<r| (23-31)

o (r)—a (1), n<r

=/,

where K, is given by Eq. (2.3-23) (or by Eq. (A-40) for the y #0 case), and
o’ =(r, —n)/ H, . Figure 2-6(c) shows the behavior of o(r)—a ™ (r) near
r=r,. The values of the reference parameters used to obtain this figure are
N, =70x107°, r,—Rp=10 km, H, =7 km, y=0, and Ay=+1/30, or
about a 7 K/km discontinuity in lapse rate.

We note in all three cases that a(i)=a(n) when r >r,; also, for

Cases B and C, «(rn:) is continuous across the surface r=r,. It follows for

Cases B and C that the difference in altitudes of the points of tangency of the
two rays about the surface r =r,, which is given by

[ =Dla ()=o)} D'=Di 405} @332

approaches zero. We will see below that when a caustic surface is generated,
one has to be more careful about the definition of the condition rn —r,.

2.4 Multipath Using a Thin Phase Screen Model

We show now some examples of the effect of these discontinuity surfaces
on the relationship between the altitude of the ray path turning point and the
altitude of the LEO-GPS line. Figures 2-7(a) through 2-7(d) show the
relationship between 4 and h,, based on the thin-screen relationship given in
Eq. (2.2-5), in the vicinity of the discontinuity at r, for Cases A, B, and C. The
same parameter values hold here that were used in Fig. 2-6.

Figure 2-7(a), which corresponds to the scenario shown in Fig. 2-2(b),
shows a super-refractivity situation. This results from a hard transition in



Chapter 2

110

*Aununuooasip ajel asdej e ‘9 ase) (p)

pue ‘Aiinunuoasip ybiay ajeas e ‘g ase) (9) ‘|aued ayy ul uaaib ajiyoad ay) o} pauayos uaaq sey N jo ajyoud ayy jey} 1daoxa
(e) se awes ay (q) ‘N < °N yum oneuads Apuanoesjai-iadns e ‘y ased () :soleuads uonrednpiad A)ANRoeRIDI JUSIBIP IO}
aul| ybiens sdoH-031 2yl jo 2y apnyiyje pue Jeyewedled joedwi ay) Jo y apniiie uaamiaq diysuonejal usalas-ulyyl °Z-g ‘b4

(w)) spnuyy Aousbue] Aey

G6'6 06'6 G8'6 086

¢-0LX0L=°N
°d

wy L= H
0g/b+ =*v

wy 000€ =d
(P)

7,
go (WU 4 50— 0l- g'1-
rrrr]
@)%y — 7
£ ]
< —ss- G0'0~- =°N/°NV
S
< q 0>4 “(syy® = LNV - Evﬁzv .
\\\\m 08 0<y ‘WPN
-5 (@)

(wy) apnpyy Aousbue] Aey

—{z8'5-
2001 866 966 ¥66 266 066
______\_ __\_____\____\____\.____ __\
T dere-” 7 7 s
s A - P
~ LS o
- o 7 o, o
‘ m\| L3 == Iy
P (PR wy Oz = H
[0] ) o
S| 0LX0L=°N
< 20/°G- 9
A i ws 000€ =@
wy 88e9 =% (9)
(wny) °y —y epnuy eAneleY
Oy —  — — =
g0 MY - 0 §lL-
T T T T T
2z 97y — ] 09—
@7l ; 50°0-= °N/NV
£ Jes- wy 2= %
S ] 501 X002 =°N
- 05— wy 000€ =@
\\\m wy| 28€9 =%
— Sp— (e)



Scattering of Electromagnetic Waves 111

refractivity (infinite gradient) at the boundary, a Case A scenario. Here a
multipath doublet configuration results. The doublet begins at an altitude in
h-space of about 79 m below the boundary (corresponding to the critical
reflection point 7) and continues down to an altitude Ah(1), or about 1.6 km
below the boundary. No rays exist for tangency points lying between the
boundary and 79 m below. Figure 2-7(a) also shows the shadow zone in
h,,-space (~60.5 < h , < ~49.3 km or, equivalently, 4 to 5 s of elapsed time)
within which no signal at all (according to geometric optics) will be received by
the LEO. Below the first contact point with the caustic in #, ,-space, the
altitude difference between the doublet rays grows to well in excess of the
Fresnel diameter.

Figure 2-7(b) uses the same conditions that were used in Fig. 2-7(a) except
that the discontinuity in refractivity has been replaced by a sharp continuous
change over a narrow transition zone just below the boundary. Although the
magnitude of the refractivity gradient is large in this zone, it is bounded so that
the ray existence condition <1 holds for all values of the impact parameter.
By softening the discontinuity, one obtains a triplet ray system and two caustics. This
yields a quasi-shadow zone where the highly defocused main ray continues, and
also a triplet ray system between the contact points with the two caustics, one at
(h(1),h, (1)) and the other at (A(2),k,;(2)). The caustic contact points mark the

upper and lower boundaries of the multipath zone.

Figure 2-7(c) shows for Case B the range of ray path altitudes and 4
values over which three (when AH |, <0) mutually interfering ray paths will be
received by the LEO. Contours of constant excess Doppler also are overlaid on

this figure. The excess Doppler value for the dashed contour through the point
at h,=-5.78, h=10 km, is about 80 Hz. The spacing between contours is

about 100 mHz.

Figure 2-7(d) shows for Case C the range of ray path altitudes and 4
values over which three mutually interfering ray paths will be received by the
LEO when Ay > 0. The point where dh,,/dh=0, at a ray path altitude of
h=h (2)=9.96km in Fig. 2-7(d), is a singularity point where the vertical
radius of the first Fresnel zone approaches infinity, which is the condition for
the existence of a caustic. For Case C, we see from Fig. 2-7(d) that the altitude
differences between the tangency points of the three mutually interfering ray
paths depend non-linearly on the location of #  within the multipath zone

ho(D)<h,<h;(2). These multiple rays arise as a result of an abrupt
downward increase in refractivity or decrease (in magnitude) of its gradient.
Figure 2-7(d) shows that the maximum separation, #, —h (1), is about 170 m
for a temperature lapse rate discontinuity of +7 K/km at A, =10 km, which is
small compared to the local mean Fresnel zone but still a significant source of
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interference. The half-width in Doppler space of the local first Fresnel zone is
given by

()]

f7= 5

(2.4-1)

where /LLG is about 2.5 km/st20%. For the assumed ambient medium at an
altitude of 10 km, f is roughly 2 Hz. The maximum separation in ray path
tangency points in Fig. 2-7(d), which is (4(1)—h,), corresponds to a tonal
separation of about 1 Hz, well within the half-width of the first Fresnel zone
and well within the 25-Hz bandwidth of the high sample rate mode in a
TurboRogue GPS flight receiver. Figures 2-7(a) through 2-7(d) also may be
used to obtain the time and Doppler intervals between caustic events. The
abscissa should be multiplied by approximately 5 to yield a Doppler scale in
hertz, and the vertical scale should be divided by approximately 2.5 to obtain a
time scale in seconds. Appendix C provides further details on the separation
geometry at the tangency points of the rays. It also shows the near-quadratic
dependence of the separation scale (and, therefore, the difference in frequency
of the tones in Doppler space) on AH , for Case B and Ay for Case C. Caustics

produce inherently nonlinear effects, and their existence depends on the
polarities of Ay and AH,.

Because the Doppler spreads in Figs. 2-7(b) and 2-7(c) are small compared
to the Doppler spread of the first Fresnel zone, use of geometric optics to
predict received signal amplitude and phase would be inaccurate. A diffraction
treatment should be used.

When Ay <0, the left-hand portion of the curve in Fig. 2-7(c) that is less
than h=h,=10km will be flipped about the horizontal axis (at
h =h(1)=-5.78); no caustic occurs and no multipath arises due to this
kind of discontinuity. However, severe defocusing will occur at the boundary; a
quasi-shadow zone results when the refractivity gradient is steep. Appendix C
provides further details and an example of this converse case.

For Case B, no caustic surface is generated when AH » /H »> 0 at h=h,,

but shadowing may be severe if the gradient is large. Diffraction effects will
soften the shadowing.

We also can estimate the relative intensity (in a geometric optics context)
and the relative phases of the multipath rays observed by the LEO. To obtain
the relative intensity, we use the defocusing function {(/4), which is given by

Eq. (2.2-6). For Case C, for example, C(h)|1/2 is shown in Figs. 2-8(a) and
2-8 (b) for Ay <0 and Ay >0, respectively. It should be noted, however, that
the altitude separation of the multipath rays for this value of Ay is well within
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the first Fresnel diameter, and, therefore, the geometric optics approach will
break down. Here {(h) will not provide a realistic measure of relative
intensities; a wave theory approach is required. Figure 2-8(b) exhibits the
flaring of intensity based on {(h) in the vicinity of the singularity point where

dh, , | dh — 0, which marks the onset of a caustic condition. Here |§ |1/2 —> oo in
the vicinity of the caustic contact point. The scalar diffraction versions of these
cases are given in Figs. 2-10(c) and 2-10(d). Irrespective of whether or not the
altitudes of the tangency points of the multiple rays lie within the Fresnel zone,
a ray optics approach based on stationary-phase theory to only second order
breaks down at the point of contact with a caustic. A third-order stationary-
phase theory is given in Appendix D.

(a) 0.6

Ay=—-1/30 05F
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Fig. 2-8. Defocusing function I{|"?> for Case C:
(a) Ay < 0; a shadow zone results; and (b) Ay > 0;
{ — oo near the caustic contact. The scalar dif-

fraction versions are shown in Figs. 2-10(c) and
2-10(d).
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The phase difference between multipath rays observed by the LEO is given
by the difference in values of the Fresnel phase function [see Eq. (2.5-1)] for
the two rays. We show later that this is given by

A=d - =
- ) 242
/21_2 (2§'+(r*+) (=) + DJ;; (0 —a* )dr*J + O{(hl’%)} ( )

where 7 — R is the altitude of a ray at its point of tangency with the Earth’s
limb. The first term on the RHS of Eq. (2.4-2) results from the increase in path
length due to the additional bending do. The second term results from the
additional delay through the atmosphere. For cases with a caustic, the observed
phase ®  must be further delineated, for example, by ®“ and ®” and
% and 1, to indicate the multipath branch to which one is referring. Again,
geometric optics breaks down for the small values of Ay used in these
examples and also near the point of first contact with the caustic. The actual
observed phase differences will differ significantly from those predicted in
Eq. (2.4-2) because of diffraction effects.
Finally, one can carry out the vector addition of the multipath signals

Eexp(i¥) = E* expi¥) + E% expi??) + E expi¥?)  (2.4-3)

using Eqs. (2.2-6) and (2.4-2) for each ray to obtain a total electric field vector
observed by the LEO as predicted by geometric optics. When the altitude
differences of the tangency points of the multiple signals are significantly larger
than 2 (h) and well away from caustics, this approach usually should be
valid.

2.5 Scalar Diffraction: The Rayleigh—-Sommerfeld
Integral

To calculate wave theory effects from these perturbations in refractivity on
bending angle, we use scalar diffraction theory applied to a thin-screen phase
profile @(h), which is defined in Eq. (2.3-16) in terms of the bending-angle
profile. Scalar diffraction theory is derived from the Helmholtz—Kirchoff
integral theorem from classical electrodynamics to relate the amplitude and
phase distributions of an electromagnetic wave over a surface to the amplitude
and phase at a point interior to the surface [3,12]. This theorem is valid when
the wavelength of the wave is small compared to the scale of the radiating
surface. Appendix A presents a version of this surface integral; also, its
contraction to a two-dimensional coplanar geometry is derived there. It
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provides the basis for scalar diffraction theory. As was pointed out in
Section 2.3, Eq. (2.3-8), one can use this integral to map the observed
amplitude and phase measurements made by the LEO backwards to an
equivalent set of observations on a surface closer to the Earth’s limb. This is the
basis for the back-plane propagation technique used in radio occultations to
reduce multipath [13—15].

Similarly, the Helmholtz—Kirchoff surface integral also can be used to map
the phase and amplitude forward from an emitting surface to the LEO [4,5].
The forward one-dimensional version of this integral [see Appendix A,
Eq. (A-22)] leads directly to the Rayleigh—Sommerfeld integral for scalar
diffraction. We adopt a thin-screen model to provide the phase and amplitude of
the emitting source in the screen. For the purpose of forward propagating to the
LEO, we use a simple phase screen mounted perpendicular to the LEO—GPS
line. This should work well provided that the perturbation in refractivity does
not violate the uniqueness condition dh/da>0 or, equivalently,
I+atana(do / da) > 0. This ensures a one-to-one relationship between 4 and
a. We also use in this integral the Fresnel approximation. Here the ray path
length from a height 4 in the screen to the LEO is given by

I=D+(h—hy )2 /2D, (Fig. 2-3). For typical LEO orbits, D>>lh—h

this approximation is adequate. For a LEO orbit altitude of 600 km, D is

roughly 3000 km, whereas the range of 7 —/, is only a few tens of kilometers.
Let E(h) and y(h,) be the normalized amplitude and phase that are

61, so

observed by the LEO at an altitude /4, as a result of the Earth’s intervening
atmosphere. If the Earth’s atmosphere were absent, the amplitude of the signal
at the LEO would be unity and the phase would be kD . Diffraction effects from
the Earth’s opaque limb are ignored here. It can be shown (see Appendix A)
that E(h,;) and y(h;) are given through the diffraction integral formulation

by

E(hy,)exp(iy(h))= 11 exp(lkD)\ il T A M) gn,  (2.5-1a)
D(h,hyo) = O(h) +——(h—hyg )7, (2.5-1b)

AD
o(h) = kj:a(h' Yl (2.5-1c)

We define ®(h,h;) to be the Fresnel phase function for the screen.
Equation (2.5-1b) shows that it equals the thin-screen phase function (%) plus
the extra geometric delay from the bending angle, k(/— D). For a transparent



116 Chapter 2

phase screen, A =1. In actuality, the integration limits in this integral are finite,
but one can for convenience set these limits to infinity. If one is interested in
edge phenomena, such as knife-edge diffraction effects from the Earth’s limb,
one can set A=0 below a certain altitude. We will show using the stationary-
phase technique that, when the stationary-phase points are located well away
from questionable boundaries, the resulting error from using infinite integration
limits is negligible because the significant contributions to the integral come
only from neighborhoods where the phase is stationary, or nearly so.

As a check, let us set @(h)=0 and A =1. Then the Fresnel phase function
becomes simply the extra geometric phase delay from any point in the screen to

the LEO, (Din(h—hLG)z/;tD. The integral in Eq. (2.5-1) reduces to a

complete complex Fresnel integral with a value of (1+i)(/lD/2)1/2. Thus,
E(h)=1and y(h,)=kD, as predicted.

There are alternative methods for evaluating the convolution integral in
Eq. (2.5-1). One approach much favored prior to the advent of modern
computers was the saddle-point method. Here we discuss the stationary-phase
technique, which expresses the results in terms of Fresnel integrals. However,
the stationary-phase technique as a computational technique is limited to a few
ideal situations with isolated stationary-phase points. When complexities of a
real atmosphere are introduced, this approach becomes cumbersome. Even
handling caustics becomes a problem unless a higher-order Taylor series
expansion is used in Eq. (2.5-1). The technique does provide some insights,
however, and also asymptotic forms that are useful in determining the limiting
value of a numerical integration. It is in that spirit that the discussion in the
following section is presented.

2.6 The Stationary-Phase Technique

The stationary-phase technique uses the fact that the principal contributions
to an integral with a rapidly oscillating kernel come from those neighborhoods
where it has the least change. Traditionally the technique mainly has been
applied to neighborhoods around well-isolated stationary-phase points or near
end points associated with a boundary of some sort. In this technique, the
integral in Eq. (2.5-1a) is evaluated in terms of a Fresnel integral by expanding
®(h,h,;) in a Taylor series in /& about the thin-screen altitude h:h*(hLG)
providing the least change in ®(h,h, ) with h, while retaining only terms up to

the second degree. This technique fails in the case of multiple stationary points
when they are not sufficiently isolated to ensure adequate phase windup in the
neighborhood between them. It also fails when the expansion of the Fresnel
phase to only the quadratic term is insufficient, for example, when the quadratic
term is zero or near zero, which occurs near a caustic. A third-order treatment is
needed for caustics.
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We show an example where the technique is sound. In this case, we assume
that there is a single stationary-phase point, well away from any boundaries that
the geometry might include. If we expand the Fresnel phase dD(h,hLG) in

Eq. (2.5-1a) in a Taylor series, we obtain

. oD o 10°D 2
®(hh ) =(h" )+ — (h=h")+=Z— (h—h
* < 1 1 T * 2
d)(h ,hLG)=kJ‘h*oc(h )dh +E(h —hLG) , (2.6-1)
oD 1 PR T do\'
= =k —=(h-h )-o(h)|, =—| =—|1-D=—=
h |y (D( 1a) = )) on* |- AD( dh)

Now we set i = h +Dalh") to null the first-order term. This condition is

identical with the thin-screen relationship in Eq. (2.2-5). Then the diffraction
integral in Eq. (2.5-1) becomes

, ‘ : 5 iL*(h—h*)z]
E(hLG)ezl//(h,_ﬁ) :ez(kD+¢D(h h))L\/iJ e[ DL dh,
1+i VAD J— (2.6-2)
_ da\
= 1—0—)
e =(1-0%

Here { is the defocusing function [Eq. (2.2-6)] evaluated at the stationary-

phase altitude h". We assume that it is positive in this example, but on
anomalous rays {<0. Now we make a change of integration variable

v=2/ADE)*(h—h") to obtain

E(hLG)eil//(hLG)iﬁei(kD+¢(h*,hLG))ijeigvzd‘}=\/Eei(kD+<D(h*,hm))’

1+id-—

kD +@(h" h) = kD(1+%a2(h*))+kJ; a(h)dh,

h =h,+Dalh")
(2.6-3)
Implicit in the integration here is that the infinite limits on the integral are valid.

Otherwise, an incomplete Fresnel integral would result, yielding diffraction
fringes. Moreover, we have assumed here that h*, the stationary value for #4, is
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unique. In the Fresnel phase expression, the term D(l +a?/ 2) = Dseco is the
slant range from the LEO to the stationary-phase point in the thin screen. The
second term, the integral term, is the total refractivity-induced phase delay, that
is, it is the extra phase delay incurred by the ray after passing completely
through the refracting atmosphere. We note the defocusing term ¢ 2 in the
amplitude term in Eq. (2.6-3), in accordance with geometric optics.

Neither of the integration assumptions used to obtain Eq. (2.6-3) is likely to
hold when refractive boundaries have to be considered, such as one of the
scenarios described by Cases A, B, or C. We need to develop the perturbation
to the nominal thin-screen phase-delay profile that results from a discontinuity
on the surface r=r,. For a ray descending through the + regime of the
atmosphere, the nominal phase delay in the thin-screen model is taken to be that
corresponding to the bending-angle profile o (r), which is given by
Eq. (2.3-18) (see also Appendix A). Because the turning point of this ray is
above the boundary, it is unfettered by the effects of the discontinuity below.
The thin-screen phase function may be broken into two parts:

q)Ref (h)’ h 2 hO’ }

Qrer () +0(h), h<h, (2.6-4)

@(h) ={

where ¢, (h) is the reference thin-screen phase function derived from the
integral in Eq. (2.3-16) in terms of the reference form for the bending angle for
o (:), nominally that given in Eq. (2.3-18). Similarly, the perturbed thin-
screen phase function d@(/) is obtained from Eq. (2.3-16) and the form for the
perturbed bending angle, for example, Eq. (2.3-31) for Case C. Thus,

0, h=h,

Sp(h) = (2.6-5)

10
kjhz o )dli, h<h,

Here h=n(r)rnsecoo—R. The quantity da(h)=o(n)—o (1) is the
perturbation in refractive bending angle. Thus, there is a break in the diffraction
integral in Eq. (2.5-1). We can use any one of Egs. (2.3-27), (2.3-30), or
(2.3-31) combined with the appropriate expression for o (r)—a (i) to
develop explicit expressions for oo (r) 6¢(h) and for o@(h), which then can be
used with ¢, (h) in the diffraction integral to calculate the LEO-observed
phase and amplitude perturbations. Appendix A gives explicit forms for d¢(h)
for the different discontinuity scenarios discussed here. Here /# denotes a height
in the thin screen, but 7 denotes a geocentric radial position in the atmosphere
of the ray path tangency point with the Earth’s limb. Also, n — R denotes the
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height in the atmosphere of the tangency point; 4 is essentially equal to
rn(r)seca — R, as has already been discussed.

As the point of tangency of the ray traversing the atmosphere approaches
the boundary, a perturbation in phase is observed by the LEO because of the
discontinuity. This results from changes in both the atmospheric delay and the
refractive bending angle. Figures 2-9(a) through 2-9(c) show the Fresnel phase
function ®(h,h;) versus h and the incomplete diffraction integral

[ expliw(h ) Jan
scenario has been used. These figures should be compared to the thin-screen
Case C scenario shown in Fig. 2-7(d), except that there the discontinuity in
lapse rate is 1/7 the magnitude used to generate Figs. 2-9(a) through 2-9(c). The
integral is obtained from a numerical integration. The phasor exp[id)(h, h )] in

/(AD)"* for three different h , values. A Case C

this integral rapidly oscillates except near stationary-phase points. Therefore,
care must be exercised in evaluating the limiting value of the integral.
Figures 2-9(a) and 2-9(b) show two cases where /i, lies outside of the
multipath zone; in Fig. 2-9(a) h, is well above the zone, and in Fig. 2-9(b) it is
just below. In Fig. 2-9(c), h lies in the multipah zone, that is, where
ho(D)<hs<hy(2). Here h (1) and A (2) mark the lower and upper
boundaries of the multipath zone, respectively. From Fig. 2-7(d), it follows that
the lower limit, A, ,(1), is independent of the magnitude of the discontinuity,
such as Ay, and depends only on the altitude of the discontinuity and the

nominal value of o (r,). However, h,;(2) corresponds to a nominal ray path
altitude above h, (when Ay >0); that is, it is the altitude of tangency point for
the main ray [the m ray in Fig. 2-2(a)]. It depends on the magnitude of the
discontinuity.

When #h, , does not lie within a multipath zone, as shown in Figs. 2-9(a)
and 2-9(b), and the convexity of the Fresnel phase function ®(h,h ) is such
that it rapidly increases as 4 moves away from its stationary-phase value, then
the stationary-phase approximation for the diffraction integral may be accurate.
This would hold for Fig. 2-9(a), even though there are reversals in polarity of
the convexity of ®(h,h;) (around h=10km), because |0P/dh|>>0 in that
neighborhood. There is a unique and isolated stationary-phase point.

However, when the convexity of ®(h,h,;) not only reverses sign but also
induces a significant slowdown in the growth rate of ®(h,h,;) to near zero,
which is shown in Fig. 2-9(b) (around 4 =10km), care in using the stationary-
phase approximation must be exercised. This figure typifies the case where a
quasi-stationary-phase altitude makes a small but significant contribution to the
overall integral in Eq. (2.5-1), which affects both the amplitude and phase of
the observed signal. A geometric optics approach to situations like this would
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be compromised even though there is a unique stationary-phase altitude for the
example in Fig. 2-9(b) (at about 7.4 km).
Finally, Fig. 2-9(c) shows ®(h,h ) when h, falls within the multipath

zone between the two caustic contact points, which results in a triplet of

(a)
I(h hg) =1 j§xp [i (k' b )lah’ (A D)2
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Fig. 2-9. Pairs of figures showing Fresnel phase @ (left) and the incomplete
scalar diffraction integral /(h,h_g) (right) for three different fixed altitudes of the
LEO-GPS line h g. A Case C discontinuity in lapse rate at 10 km has been
used with Ay =+7/30. In (a), h g lies well above the upper boundary of the mul-
tipath zone at h (2), (b) h g lies below the lower boundary at h (1) but near it,
and (c) h g lies in the multipath zone.
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stationary-phase points. Here the stationary-phase approximation is likely to be
seriously compromised. Multipath rays with narrow separations at their
tangency points comparable to or smaller than the radius of the first Fresnel
zone are difficult for the stationary-phase approximation. This is because the
technique in these circumstances tends to yield a biased phase error in the
individual £ vector computation for each stationary-phase point, i.e., each ray,
which can significantly alter the resultant £ vector after vector addition of the
contributions from the multiple ray segments. Near a caustic contact point at

(hT,th), ®(h,h,;) must be expanded in a power series in (h—n") that

includes third-order terms to obtain sufficient accuracy.

Similarly, regarding Fig. 2-9, geometric optics should be accurate for
situations depicted by Fig. 2-9(a), less accurate for Fig. 2-9(b), and inadequate
for Fig. 2-9(c) because of co-mingling of the stationary-phase contributions
from overlapping neighborhoods in impact parameter.

One can generalize Fig. 2-9(c) to situations where dD(h,hLG) supports

multiple multipath zones. It should be clear that for » multipath zones one
generally will have up to 2n + 1 stationary-phase points, i.e., 2n + 1 rays, and
also at least n + 1 caustics. Whenever a situation arises where the stationary-
phase technique degrades in accuracy, so also will geometric optics as an
approximate second-order description of electromagnetic wave processes. It
should be pointed out, however, that in multipath situations where the
separation altitudes between the tangency points of the rays are large compared
to their respective first Fresnel zones, then a geometric optics approach can be
sound. However, in the vector addition of these multiple rays to compute the
complete field vector, their relative phases must be maintained with high
accuracy.

2.6.1 Necessary Conditions for Validity of the Geometric Optics
Approach

Let h“, h”, and h° denote successive ray path altitudes at which the
Fresnel phase has stationary values for a given value of the LEO—GPS straight
line altitude above the Earth’s limb, A, (see Fig. 2-3). Then necessary
conditions for ensuring accuracy of the stationary-phase approximation
technique with multiple stationary-phase points would be

[D(h g )0~ D(R” e ) 5> 7, (R )~ (€ e )| >> 7} (2.66)

These conditions are tantamount to requiring the altitudes of the stationary-
phase points to be separated by a distance much greater than the first Fresnel
zone. However, for cases with a single stationary-phase point, as demonstrated
by Fig. 2-9(b), or even for multiple stationary-phase points where the
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conditions in Eq. (2.5-8) hold, we also must ensure that dD(h,hLG) has no near-

stationary points elsewhere. A strong condition would require that there be no
polarity changes in the convexity of dD(h,hLG) over the h-space. A somewhat

relaxed condition would require that |8(I>/8h| >>0 within any neighborhood
bounded by reversals in polarity of the convexity of ®(h,h, ). Appendix D,
which is principally concerned with third-order stationary-phase theory to deal
with caustics, provides a more explicit bound on |8(D/8h| for zero convexity
points that are isolated (|A®|>> ) from end points and stationary-phase points.

2.7 Numerical Results Using Thin-Screen/Scalar
Diffraction

Figures 2-10 and 2-11 show for several discontinuities, both positive and
negative, the resulting phase and amplitude perturbations, y/(/;) and E(h).

We refer to these as “Fresnel effects,” but in fact they are a combination of both
diffraction and interference. Away from caustic rays and deep shadow zones,
the interference in amplitude and phase is largely predictable by complex
addition of the rays from geometric optics. These figures are based on a
numerical integration of Eq. (2.5-1). Figure 2-10 shows a Case C scenario, a
lapse rate discontinuity. Figure 2-11 shows a Case A scenario, a discontinuity
in N. In both the figures, the exponential refractivity model given in
Eq. (2.3-17) was used to generate the reference phase profile for the Fresnel
phase function given in Eq. (2.5-1) for the thin screen. The perturbed Fresnel
phase was obtained from Eq. (2.6-5) using the perturbed bending-angle profile
given in Eq. (2.3-27) for Case A and Eq. (2.3-31) for Case C. To simplify the
calculations, the atmospheric altitude difference r. —r, was replaced directly by
the thin-screen altitude difference 4 —#h, without converting to the impact
parameter value.

These numerical integrations were aided by the stationary-phase technique,
which was used to isolate the neighborhoods in /-space that contribute to the
integral. Numerical integration is aided by using the asymptotic forms for the
incomplete Fresnel integrals, which these diffraction integrals assume in their
limit. These asymptotic forms also provide the characteristic wavelengths and
magnitudes of the asymptotic modulations in signal phase and amplitude. The
asymptotic expansions for the Fresnel integrals can be written in the form

x 1+i . .
foexp(igyz)d =%—(g(x)+if(x))exp(z§xzj (2.7-1)
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Fig. 2-10. Fresnel perturbations in received signal due to a discontinuity Ay = +1/30 in
lapse rate at an altitude of 10 km. The phase variations are shown in millimeters for
(a) Ay = 1/30 > 0 and (b) Ay < 0. The geometric optics terms for the reference and per-
turbed phase have been removed to stop phase windup. The amplitude variations are
shown for (c) Ay=1/30 > 0 and (d) Ay< 0.

where f(x) and g(x) are given by

1 3 1 5
X)=——m et e, (X)) = — e 2.7-2
Uey oo oy’ 80 i mty’ } ( )

By fitting the free parameters (scale factor and mean) associated with these
functions in Eq. (2.7-1) to the numerical integration of the diffraction integral in
its asymptotic regime, one can calculate the limiting value of the integral
without actually numerical integrating to the limit, thereby reducing
computations.
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Fig. 2-11 (cont'd.).

2.7.1 Fresnel Response to a Discontinuity in Lapse Rate

Figures 2-10(a) through 2-10(d) show the Fresnel effects in phase and
amplitude. The abscissa /,, has the favorable property of varying nearly
linearly with time during an occultation (within +0.5% for the spans in these
figures). The equivalent elapsed time in these figures is 5 to 7 s. The ray path
altitude in Fig. 2-10 ranges from ~6 km to ~12 km and its scale, if shown,
would be non-linear, and it would be compressed by defocusing compared to
the £, scale. The defocusing here is about 1/3. The corresponding altitudes of
the points of tangency in the actual atmosphere would be 400 to 500 m lower
(essentially (n—1)r, lower). The boundary marking the discontinuity in lapse
rate, at a thin-screen altitude s, of 10 km above sea level, is crossed when the
altitude of the LEO-GPS straight line reaches the altitude
h o = h ;(1)==5.78 km. The dry air exponential refractivity model was used to
generate the reference bending angle from Eq. (2.3-17) and the reference phase
delay; it yields at s, =10 km a reference bending angle of 5.44 mrad. The
pressure scale height is 7 km, and the temperature is 210 K. At a LEO orbital
altitude of 700 km, the limb distance is D =3000km. The principal Fresnel
effects in phase and amplitude are completed within a time interval of 2 to 3 s.

The LEO-observed phase delay from the geometric optics phase delay
(including the perturbed part below the boundary) has been suppressed in
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Figs. 2-10(a) and 2-10(b) to stop the phase windup. This leaves only the Fresnel
effects. For ray path altitudes below #,, the question arises when a caustic is
present (whenever Ay >0) as to which of the new rays should be used for
phase-stopping. The geometric optics phase delay offset A™ from the phase
delay of the main ray (m), or + ray, is shown versus /4, in Fig. 2-12. This is
the difference in phase of a—regime ray at the LEO relative to the phase of the
+ regime ray that either exists for /,; 2 h (1) or would exist if the + regime
were continued below the discontinuity. Figure 2-12 shows the phase offset A~
for the two rays in the multipath zone: the anomalous a ray and the branching

b ray. The quantity A* gives the phase offset for the a ray. This corresponds to
the aray in Fig. 2-2(a), which as a function of /4, begins at the cusp at an
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Fig. 2-12. LEO phase delay offsets from the main ray for Case C:
(a) Ay = 1/30 and (b) Ay = 2/30. Phase offsets are for the ordinary
branching ray, b, and also for the anomalous ray, a. Cusp marks
the contact point with the caustic and its offset scales roughly as
(HpoAy)“. Delay is in range units for L1.
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altitude of 7“[h,;(2)] and terminates at the higher altitude /, = h“[h;(1)]. This
point &, = h”[h,_o (1)] also marks the termination of the lower descent of the +

ray. AP gives the phase offset for the b ray. It continues downward indefinitely
into the — regime. The phase from the b ray has been applied in Fig. 2-10 to
stop the phase windup. Consequently, there is a discontinuity in phase in
Figs. 2-10(a) and 2-10(b) at &, = h,;(2). The magnitude of the discontinuity is
about 1.6 mm for Ay =+1/30 and about 20 mm for Ay =+2/30.

Figures 2-10(a) and 2-10(c) show the Fresnel response for Ay =1/30>0.
The flaring in amplitude in Fig. 2-10(a) at h,=—-6km and h" =9.8km
corresponds to the first contact with the caustic surface. In a descending
occultation, the + ray at the altitude /7" [h(2)], which is above h,, abruptly

splits into three rays, two of which, the a and b rays in the — regime, arrive at
the LEO essentially mutually in phase initially from an altitude slightly below

h, (h™[h(2)]—h, ==40m). The third, the + ray, which is the main ray or the
mray in Fig. 2-2, arrives from the original altitude above #,,
(h*[h(2)]—h, =+50m) with an initial phase offset from the other two that is
given by the cusp offset in Fig. 2-12(a).

The cusps in Fig. 2-12 mark the initial contact with the caustic surface for a
descending occultation and also the point of nascence of the a and b rays. The
altitude of the ray at the cusp is determined in terms of the Fresnel function
®(h,h,;) by the conditions that both o /Jh and 9*® /Jh” are zero there. The
magnitude of the initial phase offset at the cusp is very sensitive to Ay. It can

be shown from Appendix C that this phase offset generated by a discontinuous
lapse rate can be evaluated in terms of a power series in Ay, and that the

leading term is (A *. The relative magnitude of the flaring at the caustic
g Po g

contact point will depend on how flat the Fresnel phase function is in that
neighborhood. This is discussed further in Appendix D.

If the phase offset at the cusp from the phase of the + ray approaches a
radian, as is nearly the case for Fig. 2-12(b) (which corresponds to an
unrealistically large lapse rate discontinuity of +14K/km), then a tracking-loop-
driven GPS receiver would begin to encounter difficulty in such a
neighborhood. The concomitant flaring at the caustic contact would likely lure
the receiver to begin tracking one or the other of the nascent rays, a or b, there.
These figures (Figs. 2-10(a), 2-10(b), and 2-12) also suggest that significant
Fresnel ringing in phase and amplitude will persist well below the site of the
discontinuity but that only faint Fresnel perturbations are evident for ray path
altitudes higher than a Fresnel radius above the discontinuity when Ay >0.
Asymptotic Fresnel effects typically attenuate slowly in their continuation past
a discontinuity.



128 Chapter 2

A lapse rate change of Ay =+42/30 is too large for the tropopause and also
one does not find a strict discontinuity there. Moreover, the tracking statistics
through the tropopause from more recent LEOs is good. On the other hand,
sharp changes in refractive gradient due to a water vapor layer in the lower
troposphere or due to sharp electron density changes in the lower ionosphere
(for example, across the boundary of a sporadic E-layer) can and do cause
tracking difficulty for grazing ray paths. Multipath and diffraction effects for
these situations can be quite severe, as they are extremely sensitive to the
magnitude of the change in refractive gradient. The severity of the Fresnel
phase perturbations in the vicinity of a discontinuity in scale height is, as in

Case C, very sensitive to the magnitude of AH, , roughly the phase

perturbations scale as (AHPU )4. Moreover, from Figs. 2-6(b) and 2-6(c) and

from Appendix C, one concludes that the profile of da(r) for Case B will be
similar to that for Case C when AH, /Hpo ~—AyH, . For example, it is

shown from Appendix A that a value AHPO /Hpo =—(A)/Hpu )(Hpa /Hpa )2
gives for Cases B and C the same value for the discontinuity in the refractive
gradient at r,; only the subsequent bending-angle profiles differ, but only
slightly. When this correspondence between AH, and Ay holds, one would
expect to see Fresnel perturbations for Case B that are similar to those for
Case C.

Figures 2-10(b) and 2-10(d) show examples of Fresnel effects when
Ay <0. Here the caustic-induced flaring is absent. The Fresnel effects are
smaller and their onset is lowered in altitude to /,. Also, the severe darkening
at h=h, predicted by Eq. (2.2-6) and shown in Fig. 2-8(a) is very prominent
but modulated by diffraction.

2.7.2 Fresnel Response to a Discontinuity in Refractivity

Figure 2-11 shows the thin-screen/scalar diffraction prediction for a
discontinuity in N itself at r=r,, a Case A scenario. Here r, corresponds to a
lower troposphere altitude of about 1/2 scale height above the Earth’s surface.
The discontinuities are AN, /N,=20.05 and AN,/N,==0.005. The same
exponential refractivity model given in Eq. (2.3-17) is used here for the
reference bending angle and Fresnel phase function with N, =0.0002 and
H =7km. The dashed curves in these figures are the defocusing from the
bending-angle profile for the exponential reference refractivity based on
geometric optics. The amplitude of the incident wave just before encountering
the atmosphere is normalized to unity.

Figures 2-11(a) and 2-11(b) show the Fresnel response in amplitude to a
negative discontinuous change AN = N* —N~ <0. These can provide limiting



Scattering of Electromagnetic Waves 129

forms for the amplitude perturbations experienced by a ray encountering from
above a sharp water vapor layer at an altitude of about 4 km. A 5 percent
discontinuity in refractivity for these physical conditions corresponds roughly
to only a 10 to 20 percent change in water vapor density. In Appendix C, the
sensitivity of the corresponding Doppler spread between multiple rays to the
magnitude of AN, /N, for AN, <0 is discussed (see Fig. C-1).

Figures 2-11(c) and 2-11(d), which show the Fresnel response to a positive
discontinuity in N, provide examples of what might be observed as the
tangency point of the ray drops below the bottom of such a water vapor layer
and enters a regime of drier and speedier air. This corresponds to the ray
diagram in Fig. 2-2(a).

A relatively small negative change in refractivity, 5 percent for
Fig. 2-11(a), leads to a very deep shadow zone lasting roughly 4s. In
Appendix C, it is shown that the shadow zone duration is closely proportional

to (—AN)I/ 3 Thus, even very small negative discontinuities can result in
significant shadow zones. In Fig. 2-11(b), the magnitude of AN is a factor of
ten smaller than that used in Fig. 2-11 (a).

On the other hand, a relatively small positive AN results in significant
interference well above the boundary. It is shown in Appendix C that the
duration of the multipath region for a positive discontinuity is closely

proportional to (AN )1/ 2, Therefore, the maximum altitude separation of the rays

and also the Doppler spread for a positive discontinuity is approximately

proportional to (AN 2.

The super-refractivity condition from a discontinuity in N creates errors in
our thin-screen/scalar diffraction prediction for observed phase. The phase,
unlike the amplitude, is extremely sensitive to model approximations. The
uniqueness condition, 1+atana(da /da)> 0, is effectively violated across the
discontinuity in the bending angle (the Snell term). Chapter 3, which uses Mie
scattering theory to predict phase and amplitude at the LEO, also compares
those wave theory results with the thin-screen results for similar values of AN
(see Figs. 3-23 through 3-26).

One example of the phase perturbations from a discontinuity in N is shown
in Figs. 2-11(e) and 2-11(f) in order to point out that the phase effects across a
discontinuity depend strongly on the polarity of AN . This also is borne out in
the Mie scattering treatment in Chapter 3. In Figs. 2-11(e) and 2-11(f), the
phase windup has been stopped by subtracting from the predicted phase
observed at the LEO the geometric optics phase applicable to each regime, the
“+” and “—” regimes, as already explained earlier for Fig. 2-10. In Fig. 2-11(e),
where AN /N =-0.05, we have subtracted the geometric optics phase profile
using the reference bending angle model at all altitudes, including across the
shadow zone. However, no rays exist in the shadow zone [see Fig. 2-7(a)]
because of the discontinuity in refractivity. For Fig. 2-11(e), the shadow zone is
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defined by 7, ,(2)<h, <h,(1); hs(2)=-60.5km, and s ;(1)=-49.3km, a
temporal separation of 3 to 4 s. The shadow zone marks a transition region
where the Fresnel phase migrates from the reference Fresnel phase profile in
the + regime to the perturbed Fresnel phase profile in the — regime. The latter
involves (in a geometric optics context) the weighted (by their respective
defocusing factors) vector addition of the phase contributions from both the
b and a rays. The point A, ;(2) =—60.5 km marks first contact with the caustic.

Below this point, we have subtracted the phase from the branching ray b.
Therefore, across this transition region we see cycle slipping relative to the
prediction provided by the reference Fresnel phase profile, which here is the
extrapolated reference profile from the main ray that would apply in the shadow
zone without the discontinuity. The cycle slip essentially equals the difference
between the phase of the nascent rays at the caustic contact point at the end of
the shadow zone at A ; =/, (2), minus the phase of the main ray extended to

that caustic point, even though the main ray doesn’t exist there. For the
example in Fig. 2-11(e), this amounts to about 10 cycles. For the opposite
polarity of the same magnitude, i.e., AN /N =+0.05 shown in Fig. 2-11(f),
which involves a positive AN of the same magnitude, the cycle slip is an order
of magnitude smaller.

The ramification of this for a statistical net loss of cycles by a receiver
attempting to track a GPS signal that passes through a series of sharp positive
and negative transitions in refractivity should be noted. A GPS receiver with an
ordinary low-gain antenna is likely to have more difficulty tracking through a
deep trough in the shadow zone because of poorer signal-to-noise ratio (SNR),
as shown in Fig. 2-11(a), than it would in a strong (but messy) signal condition,
as shown in Fig. 2-11(c). Note from Figs.2-11(e) and Fig. 2-11(f) the
difference in the rate of unaccounted-for phase windup between these positive
and negative AN scenarios. Statistically this could result in a net loss of cycles
incurred by the receiver in attempting to track the phase during successive
episodes of sharp transitions of positive and negative AN . A net loss of cycles
leads to an underestimate of N .

The frequency spectrum of the fringes in Fig. 2-11(e) is biased significantly
higher than that for Fig. 2-11(f), even though the magnitude of the discontinuity
in refractivity is the same in the two sets of figures. This is because of the on-
average wider separation of the multipath tones when AN >0 (see Appendix C,
Fig. C-2). The multipath separation altitudes in the panels for AN >0 are
sufficiently wide compared to the vertical width of the first Fresnel zone that a
geometric optics approach to construct these figures using Eqgs. (2.2-5), (2.2-6),
and (2.4-1) should be fairly accurate. Also, no caustics occur in the
neighborhood about these altitudes in this case. Use of geometric optics is, of
course, much easier when corrections for diffraction can be neglected. On the
other hand, for the AN <0 case shown in Figs. 2-11(a) and 2-11(b), the dire
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predictions of geometric optics of infinite signal power at the contact point with
the caustic surface and zero power in the shadow zone are far from accurate.
Ray theory based upon second-order theory fails in these regions, or at least it
is compromised. In the former region, it fails because dh,, /dh— 0 at the

caustic contact point and, therefore, 82<D(h,hLG)/8h2:0 at that point,

rendering the quadratic form of the stationary-phase technique useless. In the
latter region, it fails because o®(h,h,;)/oh#0 at any altitude; there are no

stationary-phase points there. The scalar diffraction integral does a good job
with these two situations.

2.7.3 A Boundary Layer

An example of a two-sided boundary is shown in Figs. 2-13(a) through
2-13(d). This example might be found in a marine layer in the lower
troposphere with very sharp boundaries. Here the refractivity, shown in
Fig. 2-13(a), abruptly within 50 m rises by 5 percent over a very short range
compared to the first Fresnel zone from the dry air reference refractivity profile
used in Fig. 2-11. For this transition, r,n, +n, =-0.2; therefore, n, exceeds

the super-refractivity limit of —n, /r, =—1/6400 km™'. Then at an altitude of
1/2 kilometer lower, the refractivity abruptly drops by 5 percent. The bending-
angle profile for this example is shown in Fig. 2-13(b). It is obtained from
Eq. (2.2-2), taking care to avoid integrating across a very narrow super-
refractivity interval near the upper boundary where nn <a. Figure 2-13(c)
shows the (h,h,) relationship using the thin-screen model. In this figure, the
curve for h . versus h from the reference refractivity profile is dashed below
the upper boundary. Figure 2-13(d) shows the Fresnel response in amplitude for
this model. The dashed curve in this figure is the defocusing from the dry air
reference refractivity profile. Qualitatively, this figure is largely a composite of
Figs. 2-11(a) and 2-11(c). The shadow zone due to the strong refractivity
gradient over the transition at the upper boundary (where dN /dh<0) is
largely filled in by the “throw-back™ rays from the reverse transition
(dN [/ dh>0) at the lower boundary. It goes almost without saying that the
refractivity transitions across boundary layers in the real atmosphere can and do
produce very complicated interference/diffraction patterns in amplitude and
phase, such as those shown in Figs. 1-3 and 1-8.

Higher SNR will be called for in future missions if the fine structure in the
narrow refracting layers is to be fully studied to their sub-Fresnel resolution
limit. This means, for example, the use of an antenna array that is effectively
several decimeters in size along the vertical dimension, in-phase and quadrature
dual-band coarse acquisition (C/A) recovery of carrier phase, and so on. Sample
rates somewhat higher than the canonical 50-Hz GPS data transmission chip
rate may prove beneficial.
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